
Copyright © CIMI Corporation Voorhees NJ USA All Rights Reserved
CIMICorporation Think Outside the Bi

t

Architecture Lessons from
ExperiaSphere

Tom Nolle, President
CIMI Corporation

Chief Strategist for ExperiaSphere

Please double-click on the note callout for speaker notes!

Think Outside the Bi
t

Presenter
Presentation Notes
This presentation describes the architecture and service management lessons learned by CIMI Corporation in developing the basic model for ExperiaSphere, a Java-based tool set for the creation of object abstractions of services.

Copyright © CIMI Corporation Voorhees NJ USA All Rights Reserved
CIMICorporation Think Outside the Bi

t

IPR Declaration:

CIMI Corporation has established ExperiaSphere as an open source project under
a CDDL license. The basic structural elements and specifications of
ExperiaSphere are open and distributable/usable under those license terms in
perpetuity. Some companies may elect to offer proprietary elements that conform
to the interfaces and architecture of ExperiaSphere and these can be integrated
with open source components under CDDL. CIMI has, at present, no such
proprietary commercial implementations, and this presentation does not contain
or require the use of any such implementations. There is thus no IPR associated
with this material.

Presenter
Presentation Notes
This is an open source activity and so the high-level material is open and we declare there to be no IPR associated with it. However, ExperiaSphere is CDDL-licensed and so CIMI or other companies could elect to develop components to support it that would be commercial, proprietary, and thus might contain protectable intellectual property. There is no such material from CIMI at the time of this presentation (July 2008) and there is therefore no material of a proprietary nature disclosed or claimed herein.

Copyright © CIMI Corporation Voorhees NJ USA All Rights Reserved
CIMICorporation Think Outside the Bi

t

Two Perspectives on “Products”…

…Harmonize on ordering
something!

Demand-Side Supply-Side

Presenter
Presentation Notes
The goal of any service provider of any type is to sell services, and this simple goal exposes what we’ve found to be the fundamental issue in service operationalization; the harmonizing of a consumer and a producer view of something in such a way as to support a commercial exchange—and order.

Copyright © CIMI Corporation Voorhees NJ USA All Rights Reserved
CIMICorporation Think Outside the Bi

t

Harmonizing: ExperiaSphere Style

• We polled 10 Tier 1 operators on their service views and
plans

• We worked closely with 6 operators on how they
conceptualized their processes

• We developed a Java framework to describe a solution
to their problems

• We created an open source activity to build and
distribute that framework

• Our goal was to create something simple (Plain Old Java
Objects), lightweight enough to run anywhere, easily
modified, adaptable to standards evolution, and very low
in execution overhead

Presenter
Presentation Notes
In our work with standards bodies, including the TMF, we’ve found that there is more to achieving this “harmony on an order” than meets the eye. To try to step outside the current processes and get to the baseline issues, we drew information from our regular survey of Tier 1 network operators and on more detailed discussions with a half-dozen of those operators to review what they really were planning or hoping to do. We found that their primary goal was what some called “IP transformation”, which was the revamping of their business processes to accommodate the reality of the Internet. In nearly all the cases (all but one) the top priority was to create a set of service features that could be exposed vertically to “re-intermediate” themselves with the web processes.

This vertical partnership need also exposed the need to revamp the way that operators linked their services horizontally, and the way they operationalized and automated their processes, so that their overall service management approach was suitable for integration with high-volume activities of the type generated on the web today. We found that the operators liked the idea of having a way of prototyping this sort of new-age system, in somewhat the way that the IETF supports experimentation to advance a standard, so we developed a Java framework to support that kind of prototyping, and made it an open source activity with its own website. This started in February of this year, and we called the project “ExperiaSphere”.

Our design goals here were simple; nothing complex, expensive in development or execution costs, and never sacrifice performance to create a “god box” of software. In addition, we wanted to be interface-neutral in our approach so that we could link to standards or other products as they emerged. For that reason we focused on Java 2 Standard Edition, specifically version 1.4 or higher.

Copyright © CIMI Corporation Voorhees NJ USA All Rights Reserved
CIMICorporation Think Outside the Bi

t

Converging on an “Experiam”
Retail orders are
represented as instances of
a Service Contract which in
turn is a high-level Experiam

Resource collections
are represented as
the basis for that
Service Contract

A class of resource
(the network) can be
subdivided by the
administrations that
offer pieces of it

Any set of hosted
components from
processing to content
can be represented

Presenter
Presentation Notes
The central notion of ExperiaSphere was the concept of an “Experiam” as the unit of a service. The resource side of the process, the network operator or provider, builds toward an Experiam, and that is also what the customer orders. But an Experiam is a structure and not just an object. You create an Experiam by combining a set of components that are themselves represented by Experiams. A component set can include pure network resources, pure IT (processing, storage, application, content) resources, or a mixture of the two. Experiams representing components can be produced locally by the provider of the retail service or syndicated from another party.

Copyright © CIMI Corporation Voorhees NJ USA All Rights Reserved
CIMICorporation Think Outside the Bi

t

An Experience as a Java
Application

Environment

Messenger

Messenger

Messenger

Service Factory

Operations
And Other
Processes

ExperiaSphere is built on Java
applications that include one or
more Service Factories. Each
Factory has a Service Contract
specimen that is available to be
ordered, and an order will consist
of dispatching an instance of that
contract to the Factory. There, it
is passed down to the subordinate
factories that create each
component of the service order.
The service Order is a persistent
artifact that connects the
individual Factory contributions
and also exposes and/or accesses
any operations processes via
Messengers. A Service Factory
can take work in any form and
deliver it in any form with the
proper messenger!

Presenter
Presentation Notes
The applications that support service procurement are “Service Bazaars” which offer one or more services. Each offered service is a “Service Factory” that links to a hierarchy of Experiams that represent the components of the service. These Experiams are all themselves little factories, each capable of stamping out a specific service component when they’re activated.

The factories all integrate with the environment in which they’re run (the server that hosts the Java applications), and through that environment link they support a number of “Messengers”. A Messenger is simply a path between an Experiam and what’s outside it. All Experiams recognize a local Java method Messenger so you can write applications that just link local Experiams.

All Experiams can be linked to any outside process or interface through an appropriate Messenger, which means that you could use MTOSI or OSSJ or whatever you liked, and you could define prototype interfaces and refine them without changing the inside Factory behavior. Messengers translate between an Experiam’s work queue or its output processes and those external interfaces. Any interface that can convey the data needed to produce a work request to an Experiam can be used with the proper messenger to send or receive from it; the process is totally abstract.

Copyright © CIMI Corporation Voorhees NJ USA All Rights Reserved
CIMICorporation Think Outside the Bi

t

What We’ve Learned: Customer
Side

• It is most convenient to visualize “services” as the output
of a factory process exposed to service ordering

• The Factory must “reproduce” service relationships as
models on demand; you cannot scale a technology that
requires you model every service experience in Java

• The building of a service is the assembling of the
components as “factories” within the main contract

• The service factory structure (the “Experiam tree” is the
most convenient central visualization

• Seems to conform to the TMF notion of SDF Services

Presenter
Presentation Notes
In working through this in Java, we learned that it is not convenient to represent a “service contract” as the central object in an implementation perspective; it creates too many objects to manage. What we do instead is have the factory be the central object. A Factory represents all of the processes (the eTOM activities in the operational side) that make up a service and coordinate their interaction on behalf of the kind of contract the factory can fulfill. When you want to do something with a service order, you send the order to the factory that “owns” it, because it knows how the service is structured and operationalized.

In TMF terms, this seems congruent with the current conception of an “SDF Service” as long as you make the assumption that the object you are implementing is really the factory that produces the service, or in a way a “model” of the service that’s linked to the execution knowledge of how the model is instantiated into a product.

Copyright © CIMI Corporation Voorhees NJ USA All Rights Reserved
CIMICorporation Think Outside the Bi

t

The Resource Side

Service Layer

Resource Layer

The process of service-building is
independent of the process of resource
structuring and exposure; services can only
use exposed resource assets

Presenter
Presentation Notes
If you look at the issues from the provider side, from the bottom up, we found that there is an absolute requirement to separate the notion of “service assembly” from the notion of “resource projection and fulfillment”, which is consistent with the way the services are modeled in SID and the way that eTOM describes the activation processes. An owner of resources would build a “resource layer” of Experiams that exposed their resource assets the way that they liked them to be used, including any constraints or other policies, and linking to any appropriate resource management and monitoring processes. These resources are then exposed vertically to the Service Layer for composition into something that can be sold. The same resource set can be exposed any number of ways using any number of different policy sets. The resource and services layers can be located in the same application, in the same administration, or anywhere relative to each other, and there can be as many of each of the two as are needed or convenient.

Copyright © CIMI Corporation Voorhees NJ USA All Rights Reserved
CIMICorporation Think Outside the Bi

t

Resource Exposure: The Resource
Class

Resource Class

Behaviors

Generic
Class-

Specific

Resource Class

Behaviors

Control Domain
API Resource Class

Behaviors

Control Domain
API

An ExperiaSphere Resource Class is a set of objects that
provide comparable behavior. For example, a “Network”
resource class exposes the behaviors LINE, LAN, and
TREE

Individual resources form subclasses that can
expose any subset of the class behavior and
that end up actually controlling the resources
they represent through management
interfaces

Presenter
Presentation Notes
We found that implementation is easier if you assume that there are a number of “Resource Classes” that define broad types of things that make up services. A good example, and the one we use now in our testing, is the notion of a resource class called “Network” and one called “Cloud Resource”, meaning some IT resource that’s projectable in a network sense. Each resource class is manipulated by a set of “Behaviors” that are the essential high-level things it can do. For example, in networking you could say that a network has three class-specific behaviors; LINE, LAN, or TREE.

The actual resources that make up the resource class expose the class’ behavior or a subset of the behavior. When a service wants a given resource behavior that service can consume any Resource Class that meets their general needs. The specific way that the network does a LINE or LAN is up to the resource control process and the user doesn’t care about it, so the service layer doesn’t care either.

Copyright © CIMI Corporation Voorhees NJ USA All Rights Reserved
CIMICorporation Think Outside the Bi

t

Resource Classes to Services

Resource Class

Behaviors

Resource Class

Behaviors

A “Component”

Other “Components”

A “Specimen Contract”

As a Service is
assembled from
components, the
process builds a
specimen contract that
provides the basis for
orders from that factory.
Thus, the Factory and
not the Contract, is the
primary object

Presenter
Presentation Notes
This shows how the whole process integrates, and to understand it let’s start at the bottom. The resource owners have all created Experiams that expose their resources in their own way, and these make up a set of Resource Layers that may spread all around the world or live in a single data center. The resource Experiams are collected into service offerings we call “Components” that represent functional and commercial “atoms” from which services are built. These are assembled by the service creation process into retail services for which there is a Specimen Contract. It’s important to note here that you can have such a contract anywhere you have a commercial boundary, so this picture could show three or four layers of contract if you like.

The Specimen Contract is actually built when the Experiam Factory is initialized in Java, so this contract is absolutely the definitive description of how a service is built because it’s provided by the building-blocks themselves. The Specimen Contract is now available for ordering, and if you take one such specimen, fill it in, and send it to the Factory, you get the service it represents whether it draws resources from a single source or from around the world.

Copyright © CIMI Corporation Voorhees NJ USA All Rights Reserved
CIMICorporation Think Outside the Bi

t

What We’ve Learned: Resource
Side

• Resources are behavior sets from a service perspective;
the goal of resource control is behavior fulfillment

• The instructions on behavior fulfillment are assembled
when the service components are built by the Factory
and exposed as a specimen Service Contract

• Comparable resources should expose the same high-
level behaviors, and technology refinements should take
place inside the objects (VPLS, VPN, VLANs may all be
LANs in a behavior sense)

• Device specificity or technology specificity cannot be
exposed above the API level or it limits the ability to
develop generic code

Presenter
Presentation Notes
We learned in the process of implementing this model that it is really critical to have a bottom-up and a top-down approach to reflect those two different perspectives I opened with, and the binding between the two is logical behaviors. This seems to be the place where SID models the boundary between “customer-” and “resource-facing” services. We also learned that the service factory built a service contract based on what it needed; if you start with an abstract notion of a contract it takes too much implementation work to translate a general form into something that is specific, and it’s not really helpful anyway.

Comparable resources, we’ve found, should expose the same behaviors at the high level. There is no point in distinguishing between two different ways of generating a LINE if both ways look the same to the user. Even if they don’t we’ve found that the logical “LINE” is still the right way to start; you just do technology-specific things related to VPLS or VPNs at the boundary points where users or networks connect. We found that any device- or technology-specific accommodations in the high-level models made implementation of generic code impossible so it raises the bar on getting something prototyped or executed.

Copyright © CIMI Corporation Voorhees NJ USA All Rights Reserved
CIMICorporation Think Outside the Bi

t

Execution Structure

Messenger

Messenger

Messenger Any convenient
API set,
including OSSJ,
MTOSI, IPSF

Activation processes including optimization of
components during selection

Operations processes, including ongoing surveillance, in-
service modifications, and service termination

Back-office processes, including billing and customer
care (the latter with integration with operations
processes)
Syndication and control of external composition and
usage policies

All work is formatted into a work
queue and all output is formatted
by the messenger

Presenter
Presentation Notes
The execution structure itself is very simple. An Experiam is a Java class that contains a work queue. Messengers (working through the Factory and Environment objects to insure portability) feed the work queue. Anything that can be put into the work queue can generate work, so there is no problem supporting any interface at all. You could in theory send an email order and translate it to work via the proper Messenger, or press a “Star” key sequence on a mobile phone and do the same.

Inside the Experiam is a state/event process that links to any real process logic as needed. You could imbed code here or you could request a function from an existing application through a web service using the proper Messenger. It doesn’t matter from a structure point of view; an Experiam is just a black box that does work.

Copyright © CIMI Corporation Voorhees NJ USA All Rights Reserved
CIMICorporation Think Outside the Bi

t

An MTOSI Example

Resource Class

Behaviors

Control Domain
API

Service
Activation

Resource
Activation

Monitoring and Fault
Management

Messenger Interfaces

MTOSI ExperiaSphere

Presenter
Presentation Notes
You’ve all probably seen an MTOSI example like this one, which I pulled from an MTOSI-and-OSSJ presentation in the public domain. The MTOSI diagram shows an application-structured model. If you assume a Factory-structured model like ExperiaSphere, service activation activates an Experiam with the proper Messenger. The Experiam spawns its tree of components, each of which activate the resources through an interface that might be MTOSI if it’s supported, but could also be any other interface that we have an available Messenger for. If you wanted to do OSSJ activation, just add the right Messenger. Same with email, SMS, keystrokes, or anything else.

Copyright © CIMI Corporation Voorhees NJ USA All Rights Reserved
CIMICorporation Think Outside the Bi

t

What We’ve Learned: Building
Logic for Service Management

• A “Factory” should perform “manufacturing” according to
its model and should interact with any outside process in
an independent way for any of its functions

• A “Factory” should represent its services in the process
domain to centralize logic

• Any API or interface that can supply the data needed for
a given step in the process can invoke that step
transparently

• TMF “Interfaces” map to Messengers very effectively
• You can prototype and demonstrate functionality without

a specific need to define a final interface standard

Presenter
Presentation Notes
If you try to write a generic service management and modeling application that starts with an XML document and turns it into any service on the planet, you have a long and expensive road to travel. If you simply write a couple of Java classes that build a Factory, that Factory can spawn its own conforming order structure using any basic data model you like, including SID. A Contract is accessed by Java methods in ExperiaSphere so you get the data from any source by simply writing the Contract object to conform to your structure. By having the Factory be the central object, you bind the retail process side (the customer-facing side) and the resource control side (the resource-facing side) together in one place using easy code—Java. Best of all, you can invent a simple method or interface to test functionality and refine it quickly and easily, so you can prototype something and build the prototype into a deployable version.

Copyright © CIMI Corporation Voorhees NJ USA All Rights Reserved
CIMICorporation Think Outside the Bi

t

Partnerships and Syndication

Proxy Host

“Vertical” partnerships are extended via a separate Experiam that
enforces policies on the access of the vertical partner or developer
and that exposes a convenient message interface or API to the web
(Messenger)

“Horizontal” partnerships are extended using a “Proxy” Experiam to
represent the component locally, and this links to a “Host” Experiam
using any convenient message interface (Messenger)

REST,
AJAX,
Etc.

SOA/WS
etc.

Presenter
Presentation Notes
Partnerships and syndication of service components are a key part of the Tier 1 operators’ transformation strategies, and ExperiaSphere supports both of them. Remember, an Experiam is supposed to be an abstraction so it’s relatively easy to make a specialized kind of abstraction for each of the partnership relationships.

In the vertical direction, ExperiaSphere assumes that you will expose a special set of assets to developers in the way that you expose APIs today. This “partner abstraction” can contain any policy controls on how the partner can exercise the partnership, and this can be a Factory product that supports its own contract with the partner. It decomposes into a service that can be a wholesale offering with its own contract if you like. The interface to the partner, just a Messenger, can support any of the current Web APIs, including HTML/REST, AJAX, the Adobe Flash/Flex player interactive messages, Microsoft’s Silverlight, or whatever’s convenient. You could also support telephony-based APIs like Parlay here if you wanted. Remember, they’re all just Messengers. The link between the partnership Experiam and the main Experiam logic can be a web service or whatever works best.

For horizontal partnerships, we’ve found the most convenient way to work things is to represent the partner-contributed components in a locally composed service using an Experiam called a Proxy. This looks to the service composition process like it’s real, but it creates a link to a real Host Experiam somewhere else. If the partner Experiam is known the link is static and direct (probably but not necessarily a web service). If it’s dynamic, meaning you only know the partner by resource class or other requirements, then the Proxy binds to a Broker that will create the partnership dynamically based on service parameters when a Service Contract instance is created.

Copyright © CIMI Corporation Voorhees NJ USA All Rights Reserved
CIMICorporation Think Outside the Bi

t

What We’ve Learned: Partnerships

• This is a major priority with operators
• Partnerships must exploit the same processes as

internal services do or it won’t operationalize or scale
• You cannot assume any management visibility across

partner boundaries! You have to rely on mutual
agreement to meet SLAs and test at the boundary point

• In horizontal partnerships, the binding of service
segments at the NNIs is very complex

• In vertical partnerships, simple interfaces are mandatory;
web developers don’t like and can’t use Telco APIs
(Parlay)

• The operational links go in the Experiams that
represent the exposed service(s) and not in the APIs

Presenter
Presentation Notes
Most of the early interest we’ve had in prototyping and working with ExperiaSphere from the operators has come out of the partnership and syndication process. We have found that it is essential that these relationships look the same in an operational sense as any normal service would, and so it’s essential that they are built using the same components and with the same architecture.

Monitoring and SLA assurance are a major issue, here because you can’t assume surveillance across partner boundaries. There may be such a capability offered as a “service” and so ExperiaSphere supports a generic behavior called MONITOR to map to these capabilities where they exist. The general rule is that the partners will have a contract that guarantees they’ll meet an SLA they present or will explicitly generate a service alert if they don’t.

In horizontal partnerships we find that the big problem is creating the NNI links, and some of the same issues may arise if the user wants a virtual line or tunnel and there are multiple technical options in creating one. The “binding” of the network service components at the boundaries requires parameterization of these points, which means you have to represent them explicitly to make the connection. We do this with the notion of Service Points in ExperiaSphere.

The APIs you expose vertically are critical. The nice thing about a Java object/class as an exposed API is that it’s easy for web developers to use. If you use the Experiam and Messenger concept it’s even easier because anything that can generate a communications event can be linked via Messenger to the Experiam and kick off a process. In this case you would likely not expose any operational parameters to the user or any management conditions, you’re just triggering a service activation and maybe offering a reconnect option if something breaks. You absolutely have to keep from exposing operations or operational links vertically; they go in the Experiams and not in the APIs. Otherwise you create something that could be broken by a partner through an error or malice.

Copyright © CIMI Corporation Voorhees NJ USA All Rights Reserved
CIMICorporation Think Outside the Bi

t

Service Points

IT resources, including processors/systems/servers, applications, storage,
and files or content of any sort are modeled as a generalized “Cloud
Resource”

End users are modeled as “Endpoints” with attributes such as their
demographic classification for advertising (ExperiaSphere defines an open
demographic classification system)

Network resources are modeled NNIs and UNIs

Service Points are addressable places where a network service is connected or delivered, and any can be
represented as a single object, an object representing a class (“Mobile user”) or a “flyweight” temporary object
such as an IP address for minimal connectionless services

Presenter
Presentation Notes
You need an explicit notion of service points because most services today consist of building some sort of bounded connection network that links the consumers, and then adding resources to that network. All of this means connecting things.

We generalize networks, as I’ve said, as LANs, LINEs, and TREEs. We generalize network connection points as “Cloud Resources”, Endpoints, and xNIs.

Cloud resources expose their IT properties as behaviors; computing, storage, content, and so forth. Endpoints expose their identities in some sense, and also optionally their demographic classification. We believe there to be regulatory and public policy issues on exposing any “fact” about a user like age or sex or income, so we abstract that into a demographic coding system that we developed for ExperiaSphere because there were no standard free systems available. There’s a startup using this coding system already and so far it works fine for them. Network resources are modeled as NNIs or UNIs.

Some services don’t really scale if you assume an object for every user, so we provide the notion of a class-based identification, where a class of user like “Mobile User” or “Cable Broadband User” or “DSL User” identify the portal through which the collection of users is addressed.

A “Package” object collects the behavior data for Service Points and is attached to the Service Contract.

Copyright © CIMI Corporation Voorhees NJ USA All Rights Reserved
CIMICorporation Think Outside the Bi

t

What We’ve Learned: Modeling
Users and Network Resources

• You have to develop good general categories or
the work effort to implement explodes

• To make things scalable, you have to represent
classes of users/resources as a collective,
particularly for low-value services

• Demographic attributes have to be considered
property of the user endpoint or you run into
regulatory black holes

• Demographic classification (“Golden Senior”) is
better than specific identification of user
characteristics

Presenter
Presentation Notes
We have learned that you have to define good general categories into which you place connection or service points or the result is that the process won’t scale at implementation. You need a general object for each class, but you need to be able to use that general object to instantiate a specific example—a user among DSL users—on demand when appropriate. Thus, we view these Service Points as factories that instantiate a single user or a single NNI based on identification; the real records for that singularity are stored in a database. This is a common example of what Java calls a “flyweight pattern”.

The demographic classification of a user is absolutely essential for advertising, and everybody wants to participate in sponsored services. We found that it wasn’t possible to store real data about a consumer’s age or income or whatever, but you could classify consumers into broad groups that were significant to advertisers so we developed a demographic coding system to do that, and we offer it as part of ExperiaSphere.

Copyright © CIMI Corporation Voorhees NJ USA All Rights Reserved
CIMICorporation Think Outside the Bi

t

Status

• Website available:
http://www.experiasphere.wikispaces.com

• Coding is in Alpha-one testing
• Working with some equipment vendors on

resource integration
• Working with some operators on vertical

open feature exposure applications

Presenter
Presentation Notes
So where are with all of this? We have a website that has the public documents available on it, and we have also provided information on how to join in the process and participate. We only require that those who sign on commit to developing at least one open source Experiam or make a donation to some open software foundation (not us!). That’s to keep support for the activity at a reasonable level—too many people kicking the tires would otherwise swamp my ability to keep them supplied with data.

The Java code is in Alpha-one testing now, which means we’re testing the navigation of the Experiam Factory process and not yet trying to control resources. We’ll introduce Messengers in Alpha-two, and resource control in Alpha-three. We are working to line up partners for both these activities, but particularly with equipment vendors to link their APIs for management systems in, and with operators to link to their current developer APIs. Since this is a kind of no-pay activity for CIMI at the moment, it’s hard to say exactly how long everything will take because it has to give way to paid work, but we expect to have a fully demonstrable prototype framework running and stable before the end of this year, and we can support some testing even now. The basic architecture and the assumptions I’ve noted here have proven out in the Alpha phase so I’m comfortable that they represent a way to move forward, and at some point I expect to offer to prototype SDF Services using this approach.

http://www.experiasphere.wikispaces.com/

	Architecture Lessons from ExperiaSphere
	Slide Number 2
	Two Perspectives on “Products”…
	Harmonizing: ExperiaSphere Style
	Converging on an “Experiam”
	An Experience as a Java Application
	What We’ve Learned: Customer Side
	The Resource Side
	Resource Exposure: The Resource Class
	Resource Classes to Services
	What We’ve Learned: Resource Side
	Execution Structure
	An MTOSI Example
	What We’ve Learned: Building Logic for Service Management
	Partnerships and Syndication
	What We’ve Learned: Partnerships
	Service Points
	What We’ve Learned: Modeling Users and Network Resources
	Status

