
ExperiaSphere and “Think Outside the Bit” are Trademarks of CIMI Corporation. Copyright © CIMI Corporation Voorhees NJ USA. All Rights Reserved.

ExperiaSphereTM

Surround Yourself with a data-
model-independent, standards-
facilitating service architecture

Please click on the note callout for speaker notes!

Version 4: April 2011

Presenter
Presentation Notes
Hello. I’m Tom Nolle, president of CIMI Corporation, and I want to start by thanking you for taking the time, and showing the interest, for the issue of service facilitation in a converged age. I’m happy to be able to share my vision with you, but I want to stress that while I’m the Chief Strategist for ExperiaSphere, the concepts behind it weren’t created by me as much as structured by me. Five Tier One operators contributed their views and insights to this process, and that’s one reason I believe it’s useful.

ExperiaSphere and “Think Outside the Bit” are Trademarks of CIMI Corporation. Copyright © CIMI Corporation Voorhees NJ USA. All Rights Reserved.

The Challenge

The Internet revolution has created a major challenge for network
operators. They are forced to make very long-cycle investments in
expensive infrastructure, and more and more of that investment is now
going toward the creation of “data dialtone” in the form of broadband
Internet connectivity. Over-the-top players like Google or Hulu or Netflix
are creating new applications that drive traffic, but the all-you-can-eat
pricing model of the Internet disconnects operators from the revenue
side.

Appliance giants like Apple are now joining the fray, using handset and
tablet apps to generate more revenue for themselves, more traffic for the
operators, and more risks even in the mobile space.

Presenter
Presentation Notes
The essence of the Internet today is that it pits very agile over-the-top and device players like Google and Apple, respectively, against the community of network operators whose investment in transport and connection infrastructure has created the whole ecosystem to begin with. These operators are disconnected from the revenues generated by online advertising and hosted services, and yet their infrastructure is increasingly stressed by the traffic those applications generate. What the operators want out of this varies; some believe that they can actually compete head-to-head with the OTT giants and others simply think that they can leverage their network assets better to play a partner role in new applications—a role for which they’d receive incremental compensation. But whatever role they think they can play, the recognize that a new layer of feature-enabling, and thus service-enabling, technology will have to be deployed. The question is how they can deploy it, and whether they can make it flexible and agile enough to be valuable in a market that seems to accelerate every day.

ExperiaSphere and “Think Outside the Bit” are Trademarks of CIMI Corporation. Copyright © CIMI Corporation Voorhees NJ USA. All Rights Reserved.

The ROI Dimension

Internet Information Companies (IICs)
or over-the-top “OTT” players

Low internal rate of return, high capital inertia, low risk tolerance

High internal rate of return, low capital inertia, high risk tolerance

$
$

$
$

$

$ $ $
$

Essential Stuff is
falling between the
ROI cracks!

Fixing this problem is
a key requirement in
maximizing network
utility and profit for all

Network Operators/ Infrastructure Builders

Presenter
Presentation Notes
The news isn’t all bad for the operators, at least not in terms of being overrun by OTTs. Google and others have recently shown that it’s getting hard to find new Internet opportunities without spending a lot of money. That spending increasingly earns a lower return, and that combination makes investors very anxious. OTT players have a high internal rate of return on their capital projects, while network operators (formerly public utilities) have an IRR that’s among the lowest in the market. That difference in IRR is critical, because as we work harder to find new services that can be offered, we’re increasingly likely to need large investments in facilitating technology that has a relatively poor ROI. This new stuff would fall in between the high-flying IRR of the OTT giants and the very low IRRs of the operators. That means one thing; if the network operators could build these facilitating features and offer them wholesale to the OTT players, the classic win-win is created and there’s a path forward to creating an even more dynamic and revenue-generating service ecosystem for all.

I believe this is the critical truth of the Internet age. We need an architecture for cooperative service creation, one that spans both the OTT and operator stakeholders, and empowers each according to their ROI requirements, risk tolerance, and retail experience. That’s what operators told us they wanted to have, and even OTT players like the notion. So how do we get there?

ExperiaSphere and “Think Outside the Bit” are Trademarks of CIMI Corporation. Copyright © CIMI Corporation Voorhees NJ USA. All Rights Reserved.

The Role of Standards

You need enforceable standards to insure
broad interoperability and support multi-vendor
implementations and…

…these are typically based on
data models that then require
developing implementations
or interfaces between physical
or software elements that also
need implementing…

…and all of this can be time-
consuming, frustrating, and
costly

Presenter
Presentation Notes
Standards are one path. Operators have traditionally relied on standards (particularly interface standards) to allow them full flexibility in selecting vendors and products while using competition to control costs. The problem is that standards don’t create markets or revenues. Early attempts by the network operators to make standards work as a means of defining a service-layer ecosystem weren’t successful because the standards processes simply take too long.

Networking is based on more and more every year. There are not only more pieces of network equipment, there are more interfaces, protocols, and specifications. Then there’s the issue of software-based service features, content, processing, storage, and over it all service, network, business, and operations management. You need standards to implement things in this kind of structural chaos, but there are so darn many of them to choose from, as Andy Tanenbaum once said. But I think the real problem is the form standards are taking. If you look around you see interface specifications and data models. Those are certainly essential, but they don’t develop software by themselves, they have to be implemented in or through software. The service layer is software.

Software is more flexible than hardware. There’s a principle in Java called the “Adapter Design Pattern”, and it says that you can create any interface you like for a Java object by simply wrapping that object in an “Adapter” that takes the native interface and restructures it into a new form. In most cases, this is about a man-week’s worth of effort. Given that, why spend years debating what that native interface is? Especially when those years let the market needs and opportunities go answered.

What’s needed is a software-based approach to interoperability.

ExperiaSphere and “Think Outside the Bit” are Trademarks of CIMI Corporation. Copyright © CIMI Corporation Voorhees NJ USA. All Rights Reserved.

The “Flexibility Tax”

A service architect
creates a meta-
model of the
experience the
buyer wants…

…and
programmers
develop software
to translate it to
behaviors, and
when the
software is run…

…on one or
more servers it
finally creates…

…what the buyer
wanted in the
first place!

Presenter
Presentation Notes
Another model that’s been tried is a data-driven model. This model starts with the notion that functionality is based on processing data elements. You build a data model, you develop software that processes that model, and you run that software to create what the service buyer wants and needs. The problem is that unless you know every service you’ll need, you can’t create a generalized set of data elements nor a generally capable set of software tools. If you look at metadata-based service models, including the IPsphere Service/Element structure and the TMF SID or SDF or NGOSS contract models, you see that in effect you then need a very large and complex program that interprets all the combinations to manage all the possible services. That’s committing software development to a moving target it will never hit. Somehow you have to bound the problem, or you’re asking someone to build a factory that can create pots and pans, pens and pencils, cars and boats. Can that be done? Perhaps, but I bet you’d lose your shirt in the effort. Worse, someone with a more specialized solution to a very valuable problem would then eat your lunch on costs in the real marketplace.

ExperiaSphere and “Think Outside the Bit” are Trademarks of CIMI Corporation. Copyright © CIMI Corporation Voorhees NJ USA. All Rights Reserved.

The Path to the Solution

Service Factory

Spec

Orders

Services

Presenter
Presentation Notes
So here was our insight with ExperiaSphere. You don’t want a general data model any more than you want a factory that builds every product. What you want is a factory that builds a product, a specification of that product that the factory offers to buyers, and orders that fill in that specification. From that, you get a service.

ExperiaSphere starts here, with the Service Factory. Every service has an associated Factory, and in ExperiaSphere the factory is a Java application. That Factory creates, when it’s instantiated or loaded and run, a template that represents the data it needs to build its service. The template goes to the buyer, who fills in any variable values, and then returns the completed result as a service order. The factory then builds what it was designed to build, and you have the service outcome that was designed all along.

ExperiaSphere and “Think Outside the Bit” are Trademarks of CIMI Corporation. Copyright © CIMI Corporation Voorhees NJ USA. All Rights Reserved.

But…

• ..how is this result made open or non-
proprietary?

• ..how is it made flexible and
componentized?

• ..how is it made multi-vendor and
supportive of relevant standards?

• ..how is it going to incorporate critical
network assets and infrastructure?

Presenter
Presentation Notes
You probably see the problem, or at least one problem, with the Service Factory model. How is that any different from a service-and-vendor-and-product specific offering? To make it different we have to answer these four questions.

How can we make the framework non-proprietary? How can we make it conform to the componentization, reuse, and orchestration principles that we know now are critical to efficiently building software-based functionality? How can we support multiple vendors, relevant standards? And perhaps most important, how can we make it leverage the assets operators and OTT players alike have already created, and at the same time serve as the basis for creating new assets? If all those things can be done, we have a service-layer approach worth looking at.

ExperiaSphere and “Think Outside the Bit” are Trademarks of CIMI Corporation. Copyright © CIMI Corporation Voorhees NJ USA. All Rights Reserved.

ExperiaSphere

You start with a Java object that represents an atom of
functionality, which we call an Experiam and which has a single
specific interface, a flexible data model, and the ability to “adapt”
or encapsulate both current functionality and new features…

Environment

Messenger

Messenger

Messenger

Service Factory

…and you then define an architecture
and a set of interconnection rules that let
you integrate and orchestrate this
Experiam and groups of Experiams to
act as the “tools” in the “Service
Factory”. Build a set of tools and you
build a service.

Presenter
Presentation Notes
So how DO we do it? The answer is that we start with the notion that Java will be used as the framework for developing all of this, because Java is near-universal in its support and because it’s already considered a standard for creating service and operations tools. So we build a new Java object, a Class, called Experiam. An Experiam is an element of functionality. You can send it messages to order it to be active, inactive, to report its state, to do something. You can give it data in the form of XML. Inside it is what? Whatever you want. An Experiam can wrap around a current API or interface. It can connect to a local or remote piece of functionality. It can do something like look up a customer or send a message, or it can do nothing except organize the work of Experiams that are subordinate to it. It’s a Leggo brick, in short.

Too much generality isn’t helpful, though, so we’ve also created an architecture that defines how Experiams work to be the tools of a Service Factory. That architecture is what we call “ExperiaSphere”.

ExperiaSphere and “Think Outside the Bit” are Trademarks of CIMI Corporation. Copyright © CIMI Corporation Voorhees NJ USA. All Rights Reserved.

ExperiaSphere: The Basic Goals

• Open Source (CDDL)
• Simple Class structure based on Java

(J2SE/POJO) with lightweight syntax
• Useful with any sort of thick or thin client device,

supported on virtually any server or SDP
• Mapping to any of several standards (TMF/SDF,

IPsphere, OASIS, OMA, IMS) but not require
them

• Service-specific construction versus interpretive
for very fast prototyping and low startup cost

• Reuse key resource management assets

Presenter
Presentation Notes
I’m sure you’ve guessed by now that’s what we’re proposing to provide here. What we’ve called “ExperiaSphere” is an open source project we propose to start to address service convergence through object-oriented development.

First, ExperiaSphere is based on the new Common Development and Distribution License version 2. CDDL is an open source license that requires people who incorporate actual CDDL-licensed code into their programs to license their own development the same way, but that allows CDDL modules to be bound with proprietary ones at execution to create a commercial package that doesn’t have to be open sourced. That means that there is still a profit incentive to expand ExperiaSphere, still a way to make money on contributing to it.

Second, ExperiaSphere is based on a simple class structure that uses J2SE (Version 6 is recommended) and what are called “plain old Java objects” or POJOs. It doesn’t require Java Enterprise Edition or real-time Java, either of which are likely to cost license fees and curtail open participation. The syntax will be very lightweight; we anticipate that nearly everything will be based on a single Class with a small number of methods, and only three total classes are defined so far. We will provide samples of both non-concurrent and concurrent (blocking queue, multi-thread) implementations. The Java basis means that ExperiaSphere can run on anything that supports Java, but ExperiaSphere design allows non-Java clients or client devices with limited Java capability to participate as well.

Third, ExperiaSphere’s high level of abstraction means it can be easily made compatible with any of several standards that guide model-driven service management and feature execution (or all of them at once). We’re testing it against IPsphere, OMA, and TMF in particular, but it also will fit the OASIS model for telecom and within IMS. We think ExperiaSphere will enhance and harmonize standards now in place and developing. For example, it would let developers build experiences that could run inside a rigorous carrier standards framework (including IMS) but with different environment classes also run in a pure web over-the-top world.

Fourth, ExperiaSphere supports service creation in an explicit programming mechanism rather than through the use of a generalized software package that then interprets specific data models. An “interpretive” approach penalizes small-scale and early implementations by creating a large first-cost-first-effort process. You could argue that a service-specific approach creates more work in the long run, but that is only true if you assume that the data models being done today can really be used to describe the service and resource relationships of the future. Can you make that assumption? I’m on some pretty significant standards bodies with some pretty expert people and I don’t see the signs of full understanding of the future dawning any time soon.

Finally, ExperiaSphere helps us create reusable resource management assets. One of the most problematic things about any service logic or management framework is the management system link to the real hardware and software processes. Despite efforts like TMF’s MTOSI, we don’t have uniform linkages today, and we’re not getting them any time soon. ExperiaSphere proposes to encapsulate the diverse resource management interfaces into highly abstract classes that insulate the service and management processes from low-level interface differences and changes.

ExperiaSphere and “Think Outside the Bit” are Trademarks of CIMI Corporation. Copyright © CIMI Corporation Voorhees NJ USA. All Rights Reserved.

Introducing the Experiam

An Experiam object can
represent…

IT resources, including servers,
systems, software, storage,
applications, etc.

Advertising elements, including
consumer and business
demographics, video ads, banner ads,
ad insertion slots, etc.

Content, including downloaded and
streamed video, music, television, etc.

Networks, including access,
transport, voice, data, etc.

Presenter
Presentation Notes
ExperiaSphere is based on a software object model that envelops virtually anything into a Java-based object or object hierarchy. The unit of this structure is the Java Class “Experiam”, or “Experience Module”, which is an object whose properties are linked to the resource they represent and whose methods let you either learn about or manipulate that resource. The only limit on what an Experiam can represent is that it has to be something that is subject to software control in some way. As a practical matter, that means that it is either “addressable” in the sense that it can be located on a computer or network, or “manageable” in that it is represented by some sort of management system.

Experiams are combined with normal Java programming statements to create applications that, when executed, provide some experience or component of an experience. These can all be combined to create entire systems of experiences. For example, Experiams that represent content can be combined with those representing ads to be inserted, and with ones representing consumer demographics, to create a complete television delivery that includes ads and shows. Anyone is free to conceptualize their own resources via Experiams, and resources so encapsulated can be used by anyone who understands ExperiaSphere.

At a technical level, an Experiam is a Java Interface that is also provided in a specimen class that implements it. Experiams have a set of defined states and respond to a defined set of “events” or commands. All Experiams must fulfill the abstract Interface, support the states and events, and coordinate the behavior of what they represent according to that basic structure.

ExperiaSphere and “Think Outside the Bit” are Trademarks of CIMI Corporation. Copyright © CIMI Corporation Voorhees NJ USA. All Rights Reserved.

An Experience as a Java
Application

Environment

Messenger

Messenger

Messenger

Service Factory

Operations
And Other
Processes

ExperiaSphere is built on Java
applications that include one or
more Service Factories. Each
Factory has a Service Contract
specimen that is available to be
ordered, and an order will consist
of dispatching an instance of that
contract to the Factory. There, it
is passed down to the subordinate
factories that create each
component of the service order.
The service Order is a persistent
artifact that connects the
individual Factory contributions
and also exposes and/or accesses
any operations processes via
Messengers. A Service Factory
can take work in any form and
deliver it in any form with the
proper messenger!

Presenter
Presentation Notes
The applications that support service procurement are “Service Bazaars” which offer one or more services. Each offered service is a “Service Factory” that links to a hierarchy of Experiams that represent the components of the service. These Experiams are all themselves little factories, each capable of stamping out a specific service component when they’re activated.

The factories all integrate with the environment in which they’re run (the server that hosts the Java applications), and through that environment link they support a number of “Messengers”. A Messenger is simply a path between an Experiam and what’s outside it. All Experiams recognize a local Java method Messenger so you can write applications that just link local Experiams.

All Experiams can be linked to any outside process or interface through an appropriate Messenger, which means that you could use MTOSI or OSSJ or whatever you liked, and you could define prototype interfaces and refine them without changing the inside Factory behavior. Messengers translate between an Experiam’s work queue or its output processes and those external interfaces. Any interface that can convey the data needed to produce a work request to an Experiam can be used with the proper messenger to send or receive from it; the process is totally abstract. That means that a network operator or service provider can expose their offerings through Experiams using any Messenger, compatible with any convenient API, including all of those supported through Web 2.0 and all those provided in standards such as those of TMF.

ExperiaSphere and “Think Outside the Bit” are Trademarks of CIMI Corporation. Copyright © CIMI Corporation Voorhees NJ USA. All Rights Reserved.

Making Factories into Service
Layers

Service Factory

Presenter
Presentation Notes
The problem here is that even this level of architecture and abstraction isn’t enough to create an ecosystem, the ecosystem that we call the “service layer” of the NGN. A service factory is a piece, but like a piece in a puzzle it can only define one dimension of what’s next to it, and it can’t define the whole picture at all. We need to have another set of tools, of architectural assumptions, to create the Big Picture that decomposes into Factories.

ExperiaSphere and “Think Outside the Bit” are Trademarks of CIMI Corporation. Copyright © CIMI Corporation Voorhees NJ USA. All Rights Reserved.

Resources, Services,
Sandboxes

The “Real” Resources of the Operator/Provider

A Resource-Layer Abstraction A Resource-Layer Abstraction

A Service-Layer Abstraction

Developer
Sandbox

Developer
Sandbox

A Service-Layer
Abstraction

ExperiaSphere presumes that real assets, in the form of networks (via APIs) and IT
elements (also likely via APIs) will be marshaled into objects that represent basic
resource tools, and then re-abstracted higher to reflect various partner and internal
service feature development needs.

Presenter
Presentation Notes
What ExperiaSphere presumes, and recommends, but does not require, is that the process of service-building is at a high level divided into resources, services, and sandboxes. Resources are the basic functional tools—the network and IT and feature and OSS/BSS assets. These are tightly owned and managed by their operators. To expose and use them we create a Resource Layer, where objects represent these basic resource tools, and these objects can then enforce any loading, security, or other restrictions on those tools. The raw resources are controlled by the Resource Layer.

What we then do is to create a higher layer, a Service Layer. This is the layer where real retail offerings are built. The Service Layer, though, knows Resource Layer elements only through the appropriate abstractions. Most ExperiaSphere development is done in this layer.

At the top of the process is what we call a “developer sandbox”. This is designed to expose Service Layer assets in a form suitable for developers at one or more levels. The same assets could be exposed in multiple ways to create multiple sandboxes. Inside one, all you can see is the assets, the Java Classes, of the sandbox you’re in, and you can exercise the lower-level stuff only through the intermediaries that you can see.

ExperiaSphere and “Think Outside the Bit” are Trademarks of CIMI Corporation. Copyright © CIMI Corporation Voorhees NJ USA. All Rights Reserved.

Resource Classes to Services

Resource Class

Behaviors

Resource Class

Behaviors

A “Component”

Other “Components”

A “Specimen Contract”
As a Service is
assembled from
components, the
process builds a
specimen contract that
provides the basis for
orders from that factory.
Thus, the Factory and
not the Contract, is the
primary object

Service Factory

Presenter
Presentation Notes
Let’s now take this higher-level layered picture and combine it with Factories and Experiams. We’ll start at the bottom.

To create an elastic binding between services and resources, ExperiaSphere defines the Resource Layer as a collection of Objects that assert Behaviors. A Behavior is some useful functionality of a resource, and any set of resources that can assert the same Behavior can fulfill the same mission. We allow every Service Order to bind dynamically at order time to the optimum set of behaviors for its needs.

At the Service Layer, the Experiams that represent units of Service functionality then bind with Behaviors that produce that functionality. This creates a set of resource-linked “Components” that are tools in a Service Factory. Other Components are Experiams that either contain specific functionality in themselves, or that organize and manage lower-layer Experiams. At the top of the heap is a “Prime Experiam” that represents the Service as a whole, and that is the root of the hierarchy or structure of Experiams that make up the Factory. Each Experiam contributes its own piece of metadata to the Specimen Contract that will be offered to buyers, and when that Contract is returned as an Order, the data in it drives each Experiam to perform the role it was built for—because each Experiam defined its own metadata.

ExperiaSphere and “Think Outside the Bit” are Trademarks of CIMI Corporation. Copyright © CIMI Corporation Voorhees NJ USA. All Rights Reserved.

Partnerships and Syndication

Proxy Host

“Vertical” partnerships are extended via a separate Experiam that
enforces policies on the access of the vertical partner or developer
and that exposes a convenient message interface or API to the web
(Messenger)

“Horizontal” partnerships are extended using a “Proxy” Experiam to
represent the component locally, and this links to a “Host” Experiam
using any convenient message interface (Messenger)

REST,
AJAX,
Etc.

SOA/WS
etc.

Presenter
Presentation Notes
Partnerships and syndication of service components are a key part of the Tier 1 operators’ transformation strategies, and ExperiaSphere supports both of them. Remember, an Experiam is supposed to be an abstraction so it’s relatively easy to make a specialized kind of abstraction for each of the partnership relationships.

In the vertical direction, ExperiaSphere assumes that you will expose a special set of assets to developers in the way that you expose APIs today. This “partner abstraction” can contain any policy controls on how the partner can exercise the partnership, and this can be a Factory product that supports its own contract with the partner. It decomposes into a service that can be a wholesale offering with its own contract if you like. The interface to the partner, just a Messenger, can support any of the current Web APIs, including HTML/REST, AJAX, the Adobe Flash/Flex player interactive messages, Microsoft’s Silverlight, or whatever’s convenient. You could also support telephony-based APIs like Parlay here if you wanted. Remember, they’re all just Messengers. The link between the partnership Experiam and the main Experiam logic can be a web service or whatever works best.

For horizontal partnerships, we’ve found the most convenient way to work things is to represent the partner-contributed components in a locally composed service using an Experiam called a Proxy. This looks to the service composition process like it’s real, but it creates a link to a real Host Experiam somewhere else. If the partner Experiam is known the link is static and direct (probably but not necessarily a web service). If it’s dynamic, meaning you only know the partner by resource class or other requirements, then the Proxy binds to a Broker that will create the partnership dynamically based on service parameters when a Service Contract instance is created.

ExperiaSphere and “Think Outside the Bit” are Trademarks of CIMI Corporation. Copyright © CIMI Corporation Voorhees NJ USA. All Rights Reserved.

Standards-Compliant Thru
Standards-Independence

• High level of abstraction means that
ExperiaSphere’s conception can envelope
any standard component or interface

• No specific data model means any
standards-driven model will work

• Accommodates true object-based models
and also procedural/process models

Presenter
Presentation Notes
One thing that an open source project has to avoid is becoming a standards group, and ExperiaSphere isn’t going to try to do that. The essence of the ExperiaSphere model is a very high level of functional abstraction, meaning that functional components of an experience are modeled as Experiams, and this means that most standards (which focus on processes and interfaces) are really “inside” this high level. However, as you move downward in a hierarchy of Experiams you can become more process-abstract, meaning procedural in the way it’s used. Java, after all, is a programming language.

ExperiaSphere doesn’t define a data model, only a Class model, so it can be driven by any convenient data model, standard or not. The only variables ExperiaSphere defines (as opposed to “accepts”) are those used to control its own behavior.

The functional abstraction I mentioned before is a tool in applying ExperiaSphere to different standards-based approaches to service logic and management. Some bodies have taken a very strict object-based approach, and I’d offer the IPsphere Forum as an example. Others have taken a more process-map approach, or a data-model-driven approach, and the TMF has elements of both these focus points in its eTOM and SID. ExperiaSphere can accommodate and extend either or both, and even create harmony between them.

ExperiaSphere and “Think Outside the Bit” are Trademarks of CIMI Corporation. Copyright © CIMI Corporation Voorhees NJ USA. All Rights Reserved.

ExperiaSphere and the NGOSS
Contract

“Experiam” Object

“Experiam” Object

NGOSS Service (retail)

NGOSS Service
(wholesale)

“Experiam” Object

eTOM L2
Experiam

eTOM L2
Experiam

eTOM L2
Experiam

eTOM L2
Experiam

eTOM L2
Experiam

“Experiam” Object

eTOM L2
Experiam

eTOM L2
Experiam

eTOM L2
Experiam

eTOM L2
Experiam

eTOM L2
Experiam

Presenter
Presentation Notes
One of the most important TMF concepts emerging today is the notion of an “NGOSS Contract” that includes not only the usual information about commercial terms but also technical information on how the operations process and resources are combined to create what the user is buying. This is one of the “views” now being described in the NGOSS Contract work.

ExperiaSphere can be an implementation of an NGOSS Contract “view” relating to implementation, deployment, and assurance. The NGOSS contract can link to or identify an Experiam that represents each of the components of the service, and can describe in Experiam Object structure terms how the service is really created and how other lifecycle processes are managed. ExperiaSphere can also represent a wholesale or component relationship with another provider, where the link would be to a wholesale contract, then on to an experience structure.

ExperiaSphere and “Think Outside the Bit” are Trademarks of CIMI Corporation. Copyright © CIMI Corporation Voorhees NJ USA. All Rights Reserved.

An MTOSI Example

Resource Class

Behaviors

Control Domain
API

Service
Activation

Resource
Activation

Monitoring and Fault
Management

Messenger Interfaces

MTOSI ExperiaSphere

Presenter
Presentation Notes
You’ve all probably seen a TMF MTOSI example like this one, which I pulled from an MTOSI-and-OSSJ presentation in the public domain. The MTOSI diagram shows an application-structured model. If you assume a Factory-structured model like ExperiaSphere, service activation activates an Experiam with the proper Messenger. The Experiam spawns its tree of components, each of which activate the resources through an interface that might be MTOSI if it’s supported, but could also be any other interface that we have an available Messenger for. If you wanted to do OSSJ activation, just add the right Messenger. Same with email, SMS, keystrokes, or anything else.

ExperiaSphere and “Think Outside the Bit” are Trademarks of CIMI Corporation. Copyright © CIMI Corporation Voorhees NJ USA. All Rights Reserved.

ExperiaSphere as a Harmonizer

“Experiam” Object

“Experiam” Object

Service Template (SID)

Element Templates
(SID)

Here, ExperiaSphere uses its flexible abstraction capability to merge TMF-based
abstraction and IPsphere abstraction into a common model.

“Experiam” Object

eTOM L2
Experiam

eTOM L2
Experiam

eTOM L2
Experiam

eTOM L2
Experiam

eTOM L2
Experiam

“Experiam” Object

eTOM L2
Experiam

eTOM L2
Experiam

eTOM L2
Experiam

eTOM L2
Experiam

eTOM L2
Experiam

Presenter
Presentation Notes
This slide takes that two-model-mode behavior to its logical conclusion, illustrating how ExperiaSphere can combine IPsphere and TMF into a single model. The IPsphere model of Services and Elements is decomposed by Experiams into a TMF-based SID-driven set of “services” and “resources” that are then managed through eTOM Experiams. This transformation is painless because there is no explicit process map or data model in ExperiaSphere; it simply adopts the one that’s necessary and makes it into software objects.

ExperiaSphere and “Think Outside the Bit” are Trademarks of CIMI Corporation. Copyright © CIMI Corporation Voorhees NJ USA. All Rights Reserved.

Why Do This?
• There is a missing piece in service convergence that threatens the

deployment of advanced infrastructure and the introduction of
advanced services

• The ExperiaSphere work focuses on developing what can be
executed, in an IETF-like climate of experiments and interoperability
tests

• Experiams can be developed and shared in source form to create an
expanding community of service tools

• Experiams can be hosted in a secure environment to provide an
alternative to traditional APIs and to foster partnerships both
vertically and horizontally

• Experiams can do anything and so can be expanded in an instant
to support the evolving needs of a fast-moving market

• Experiams exploit the most widely supported programming
language available, one that is already accepted as a platform for
creating operations and service tools (Sun JAIN, TMF OSSJ, for
example)

Presenter
Presentation Notes
Why bother with this? It’s a reasonable question as I get ready to close here. There are several reasons I think are compelling.

First, the lack of any specific software model in so many critical service operations and management standards is a threat to convergence itself, and to the development of new services that will drive the deployment of new infrastructure.

Second, the higher-layer (above-the-net) standards processes have lacked the easy facility of the IETF processes to generate experimental implementations and quick tests of interoperability. ExperiaSphere puts all that back in the game.

Third, Experiams can be viewed as contributions to an ongoing open source library of object tools, as well as a source of commercial projects that would create compatible for-fee tools and objects. This creates an ecosystem that enhances the model and advances its goals—and the market’s goals.

Fourth, Experiams can be “hosted”, meaning that an Experiam running in one place can be securely linked to one running elsewhere, providing a secure proxy for that remote Experiam. That means that Experiams can represent views into a resource owner’s infrastructure that can be shared without being revealed.

Fifth, Experiams can envelope ANYTHING that can be represented as a software process. Obviously that includes software processes themselves, but it also includes network devices or systems of devices, IT devices, storage, computers, sensors, billing, accounting, paying, receiving…you name it. That means you can create complete and complex relationships in ExperiaSphere, and the Experiams you create can both come from other sources and be contributed to other users because they obey a common structural standard.

Finally, Experiams leverage the power of the web, of the Java programming language that’s the lingua Franca of the web. It’s a language that has also already crossed over into common carrier applications, so it spans the network, Internet, and IT worlds effortlessly. There is an enormous community of developers for Java, the largest programming community in the world, for us to draw on.

ExperiaSphere and “Think Outside the Bit” are Trademarks of CIMI Corporation. Copyright © CIMI Corporation Voorhees NJ USA. All Rights Reserved.

We Need Help!
• Equipment vendors who are prepared to work to expose

management APIs via Experiams
• Software/application vendors who are prepared to create

Experiams around their interfaces and elements
• Enterprise equipment and software vendors interested in

an ExperiaSphere model of collaboration and Unified
Communications, or other applications

• Java programmers who want to participate in the service
convergence revolution

• Contact tnolle@cimicorp.com for details on how to get
involved!

Presenter
Presentation Notes
I hope that this has whetted your appetite and interest in ExperiaSphere and that you want to get involved. Good, because I need your help with this. ExperiaSphere will be an open source CDDL project that will hopefully draw resources from a variety of sources in our industry, but there are some early priorities that we need to address and so I’m focusing there first.

The number one issue we must address is the actual control of physical resources, which would be done via normal resource management systems and interfaces. I’m calling for equipment vendors to work with us to create Experiams that envelope their interfaces, in such a way as to be secure, protected, and reliable.

The second thing we need is a similar level of support for existing operations and network application processes. Work with us to build Experiams around these. Remember, your software isn’t released into open source by this move, only the interface to it!

The last thing we need is Java development help. We’re particularly interested in Java programmers who can work with the concurrency and event handling capabilities of Java 2 SE version 6, with things like threads and thread pools, blocking queues, and so forth.

If you are willing to step up here, we can accomplish a lot. Please contact me personally at tnolle@cimicorp.com or call me at 856 753 0004 and let me work with you in a partnership to change our market.

mailto:tnolle@cimicorp.com

ExperiaSphere and “Think Outside the Bit” are Trademarks of CIMI Corporation. Copyright © CIMI Corporation Voorhees NJ USA. All Rights Reserved.

Thank you!

	ExperiaSphereTM
	The Challenge
	The ROI Dimension
	The Role of Standards
	The “Flexibility Tax”
	The Path to the Solution
	But…
	ExperiaSphere
	ExperiaSphere: The Basic Goals
	Introducing the Experiam
	An Experience as a Java Application
	Making Factories into Service Layers
	Resources, Services, Sandboxes
	Resource Classes to Services
	Partnerships and Syndication
	Standards-Compliant Thru Standards-Independence
	ExperiaSphere and the NGOSS Contract
	An MTOSI Example
	ExperiaSphere as a Harmonizer
	Why Do This?
	We Need Help!
	Thank you!

