
ExperiaSphere and “Think Outside the Bit” are Trademarks of CIMI Corporation. Copyright © CIMI Corporation Voorhees NJ USA. All Rights Reserved.

Think Outside the Bi
t

ExperiaSphereTM and Embedded
and Open Handset Architectures

Please click on the note callout for speaker notes!

Think Outside the Bi
t

Presenter
Presentation Notes
Hello. I’m Tom Nolle, president of CIMI Corporation, and I want to start by thanking you for taking the time, and showing the interest, for the issue of service facilitation in a converged age. I’m happy to be able to share my vision with you. This particular presentation is about the application of ExperiaSphere to embedded frameworks in general, and in particular open handset architectures such as Android and LiMo. If you need an overview of ExperiaSphere or a technical backgrounder, you should view those presentations first; they are available for download at www.experiasphere.wikispaces.com.

ExperiaSphere and “Think Outside the Bit” are Trademarks of CIMI Corporation. Copyright © CIMI Corporation Voorhees NJ USA. All Rights Reserved.

Think Outside the Bi
t

A High-Level View of a “Service”

User/Client Experience

Service Features and
Applications

Transport and Connection

Presenter
Presentation Notes
Let’s start off by level-setting with requirements. In today’s market, services are cooperative behaviors between an appliance that represents the user, a server that hosts features and applications that make up the meat of the service, and the transport/connection resources that tie all this together. The “intelligence” of the service, the behavior set that makes it valuable and differentiable, can be created in theory anywhere in this chain, and obviously in more than one place.

The user’s own appliance is a place where the service value can be most personalized, and so it’s a logical focus. General-purpose computing devices like laptops, and perhaps to a similar degree PDAs, are highly customizable using generally standard programming practices, and so can be used as very flexible appliances through which services can be presented. But there are other devices that are more often used by people; mobile phones, and eventually in-home and in-vehicle custom electronics, game consoles, etc. All of these are a hybrid of computing technology and fixed-mission device technology, and most aren’t fully programmable. They aren’t the easiest things to support new services with for this reason, but they’re likely critical conduits for services in the future.

ExperiaSphere and “Think Outside the Bit” are Trademarks of CIMI Corporation. Copyright © CIMI Corporation Voorhees NJ USA. All Rights Reserved.

Think Outside the Bi
t

ExperiaSphere and Services

User/Client Experience

Service Features and
Applications

Transport and
Connection

Service
Requests

Features
and Experiences

Control
Talker

ExperiaSphere

Presenter
Presentation Notes
ExperiaSphere has been structured to view this modern service environment as a series of vertical relationships as depicted here. From your review of basic ExperiaSphere concepts, you know that services or experiences are represented by “Experiams” that are activated at need, and Experiams are decomposed into service components that are similarly represented. At the bottom of the heap, resource control is exercised through Control Talkers that handle management interfaces. Client devices make experience requests that are normally decomposed into features and content by servers, and transported by networks.

Where the client appliance is computer-like, the Experiam that represents the user experience, and even some component feature Experiams, can be hosted locally to the user and integrated with either applications or browser activity there. But the less computer-like the appliance, the more restrictions could be placed on the Experiams there.

The industry has traditionally called CPU-based but non-computer devices “embedded control applications”, and this document describes how these devices, including and especially smartphones or advanced mobile handsets, can use ExperiaSphere. We’re giving examples in this document of mobile handset applications, but the same rules would apply to any embedded platform.

ExperiaSphere and “Think Outside the Bit” are Trademarks of CIMI Corporation. Copyright © CIMI Corporation Voorhees NJ USA. All Rights Reserved.

Think Outside the Bi
t

What’s an Embedded System and
Why Does ExperiaSphere Care?

• Embedded systems are devices that contain
computer logic but which are not intended to be
general-purpose computers

• Many communications devices, including mobile
handsets, PDAs, electronic books, game
systems, etc. are embedded systems

• ExperiaSphere should be able to add value to
these devices in some useful way to be fully
market-relevant

Presenter
Presentation Notes
Special-purpose embedded control devices are increasingly based on software operating system tools that look superficially like computer systems, and on “middleware” that lets these devices communicate with things like the Internet. All of this opens an avenue to exploit these devices as the endpoint for services to the devices’ users. That’s especially true given that more and more of these devices are being designed to either offer direct Internet access or to use the Internet to obtain some services integral to their operation; Amazon’s Kinder electronic book is an example.

What we’re going to focus on here is how to apply the ExperiaSphere model to this sort of device.

ExperiaSphere and “Think Outside the Bit” are Trademarks of CIMI Corporation. Copyright © CIMI Corporation Voorhees NJ USA. All Rights Reserved.

Think Outside the Bi
t

An Overview of the Issues
• ExperiaSphere is a Java-based architecture that is

based primarily on a class called “Experiam” which
represents services or experiences.

• Experiams are “Plain Old Java Objects” or POJOs, and
we encourage them to be developed using the basic
J2SE Version 6 capabilities.

• J2SE V6 is generally available on computer systems like
desktops, laptops, and servers running Windows, Linux,
Solaris, etc.

• Special-purpose devices may not offer complete J2SE
V6 support and will thus present special issues with
ExperiaSphere

Presenter
Presentation Notes
ExperiaSphere is an open source Java architecture designed to allow service logic and service management applications to be authored in Java by assembling simple experience components called Experiams. To make the concept as portable as possible, we have assumed that Experiams are POJOs built around Java 2 Standard Edition Version 6 or higher. That means that anything that has a Java Virtual Machine of that level can be used to host Experiams. Most general-purpose computers and laptops, and some PDAs, have this capability. However, some embedded control devices don’t. In addition, user devices are typically less powerful than servers, and there may be performance and resource constraints on how they could be exploited to host Experiams.

ExperiaSphere and “Think Outside the Bit” are Trademarks of CIMI Corporation. Copyright © CIMI Corporation Voorhees NJ USA. All Rights Reserved.

Think Outside the Bi
t

Embedded System Architectures

Operating System
Embedded Kernel

Application Framework
Or Environment

Java VM

Applications

Presenter
Presentation Notes
Embedded systems, meaning computer-based devices that are not true general-purpose computers, support an architecture like the one shown above. There is an operating system or kernel that provides basic hardware control and software scheduling capabilities, and an application framework or environment that offers APIs to link to the operating system for resource requests and other services. This is much like the structure of a general-purpose computer system, but in the latter the combination of these lower layers is almost always designed to support a wide variety of application tools, including Java. With embedded systems of any sort, Java virtual machine support may or may not be provided, and if it is the support may or may not be fully compatible with J2SE V6.

ExperiaSphere and “Think Outside the Bit” are Trademarks of CIMI Corporation. Copyright © CIMI Corporation Voorhees NJ USA. All Rights Reserved.

Think Outside the Bi
t

Supporting Embedded
Architectures

• There are three approaches:
– Develop Experiams on the embedded device

in essentially the “normal” way
– Develop Experiams on the embedded device

that are proxies for “real” Experiams that are
hosted elsewhere

– Develop an Event Source on the embedded
device that links to an Experiam hosted
elsewhere

Presenter
Presentation Notes
There are three basic approaches to supporting embedded devices, and selecting the best approach is a matter of understanding what limits the device places on Java-based applications.

First, if a device supports essentially standard J2SE V6 or better, we can let it host Experiams to the extent that it has the resources. This kind of device really doesn’t demand any special consideration in the way it uses ExperiaSphere.

Second, if a device supports Java in some form but not fully, or if its resources are highly constrained, it can be used to host a “proxy” Experiam that will use the device’s communications tools to make a service request to the host Experiam run elsewhere. This allows a very lightweight Experiam development in the client but still supports the use of ExperiaSphere both as a client and server tool.

Third and finally, if a device does not have Java support at all, it cannot run Experiams locally. This means that if ExperiaSphere is to support these devices, it must be signaled by some means other than Java calling of modules.

Which of these is best? That’s what we’ll cover now.

ExperiaSphere and “Think Outside the Bit” are Trademarks of CIMI Corporation. Copyright © CIMI Corporation Voorhees NJ USA. All Rights Reserved.

Think Outside the Bi
t

The “As Usual” Approach
• If the embedded device supports full J2SE V6

capabilities there are no restrictions in developing
Experiams for it and all properly designed Experiams
should work on it

• If the embedded device supports some reasonable
subset of J2SE V6, it may be possible to develop and
use Experiams freely as long as they use only the
available Java libraries and facilities

• There may be performance issues with this
approach if the embedded device is constrained in
resources or processing power

Presenter
Presentation Notes
It seems pretty clear that if a device can support the same sort of Java development as a computer can, then that device can be made to support ExperiaSphere fully. In fact, it’s possible to support ExperiaSphere on even limited Java platforms as long as the Experiams used are not dependent on features that the JVM of the device won’t support. The only caveat with this statement is that where third-party contributions of Experiams is desired, it may be difficult to insure that these Experiams comply with the limited Java capabilities of the device, so developers will have to exercise caution in linking in Experiams to applications.

The biggest issue with using “As Usual” ExperiaSphere practices on limited-function client devices with embedded Java capability may be the resource limits of the devices, especially their performance restrictions. A lot of complex Java logic inside a phone may make the phone a lot less useful for any application, for example. For that reason, we’d recommend caution with this approach.

ExperiaSphere and “Think Outside the Bit” are Trademarks of CIMI Corporation. Copyright © CIMI Corporation Voorhees NJ USA. All Rights Reserved.

Think Outside the Bi
t

The “Proxy Approach”

• Proxy Experiams require only minimal
Java capabilities to develop, and need
only a communications link available to
bind them to their host

• Considerable processing can be offloaded
onto the host Experiams reducing
resource load on the embedded device

Presenter
Presentation Notes
The most logical way to use ExperiaSphere in embedded applications is to confine on-device Experiams to “proxy” behavior. A Proxy Experiam is a local placeholder for a hosted service supported elsewhere, and while you can write it into Java applications on the client, it really operates by making a remote request (through a web service, for example) to a “host” Experiam running elsewhere. The only requirement that the Proxy has to support is a communications protocol suitable for the linkage, which means very rudimentary Java logic is all that’s needed.

If your embedded device has Java capability, this is probably what you will want to do.

ExperiaSphere and “Think Outside the Bit” are Trademarks of CIMI Corporation. Copyright © CIMI Corporation Voorhees NJ USA. All Rights Reserved.

Think Outside the Bi
t

The “Event Approach”
• Experiams require a Java VM and if none is available

they cannot be developed
• The recommended approach for this is the binding of an

Experiam on another Java-compatible platform to a
signal set from the embedded platform

• A Bind Experiam class provides a link between
Experiams and the embedded system by acting as an
event relay from the embedded signal set to Java and
ExperiaSphere

• The “signal set” can be a browser-generated event set if
the embedded device supports a browser (AJAX, for
example)

Presenter
Presentation Notes
Suppose it does not? If Experiams won’t run on an embedded client, it doesn’t mean that ExperiaSphere can’t support this kind of device. The way that’s done is through the flexible ExperiaSphere concept called a “BIND”. Experiams communicate either through direct Java calls or through a BIND object that links it to an event queue and that represents its input source. The BIND process links an Experiam with a remote event connection, including either a Proxy Experiam or a non-Experiam that can generate any recognizable communications message.

To make this work, the BIND in the Host Experiam specifies a communications channel, including a web service, a SIP call address, a TCP or UDP port, or whatever. A connection to this port is translated by the BIND’s “listner” process to an event to the Host Experiam, and that in turn creates the service request. The signal set used can simply activate something without parameters, or pass parameters as required. The sophistication of the process is dependent on the capabilities of the client device and the limitations of the message path, if any.

In addition to this, a remote device can use a browser trigger such as an AJAX event to activate an Experiam. Since this is a somewhat generic mechanism, it may be suitable for creating more sophisticated triggers from embedded devices that have at least limited browser support.

ExperiaSphere and “Think Outside the Bit” are Trademarks of CIMI Corporation. Copyright © CIMI Corporation Voorhees NJ USA. All Rights Reserved.

Think Outside the Bi
t

Some Key Examples

• Google Android, a Linux-based system
with strong Java support

• Apple’s iPhone, OS X (Unix-based), some
Java browser support but no developer
support for Java

• LiMo, Linux-based, limited data
capabilities, no Java support

Presenter
Presentation Notes
The best way to understand all of this is by example, so we’ve picked for convenience three handset approaches to use. One is the Google Android, the second the Apple iPhone, and the third the LiMo Foundation’s Linux handset. All of these open models support, in theory, a variety of devices and any could be used to provide communications connections using ExperiaSphere. It’s all in matching the capabilities of each model to ExperiaSphere’s options.

ExperiaSphere and “Think Outside the Bit” are Trademarks of CIMI Corporation. Copyright © CIMI Corporation Voorhees NJ USA. All Rights Reserved.

Think Outside the Bi
t

Google’s Android

Presenter
Presentation Notes
This is a picture of the Google Android architecture, courtesy of Google’s Android website. Android is built as a application framework based on a kind of pseudo-Java that runs on Dalvik, a custom virtual machine created by Google for embedded applications, and in turn on a Linux kernel. Applications for Android are written using the Android SDK, which is a Java library, but which is not fully J2SE V6 compliant but which supports most Java features in common use.
We are recommending that Android applications be developed supporting either the “As Is” or “Proxy” approach, depending on the complexity of the application and the extent to which it will use Experiams developed by others and thus likely to require some Java features Andriod does not provide. If developers want extensive Experiam logic on their Android platform, they should insure that the features used by all the Experiams they expect to commit to are compatible with Dalvik.

ExperiaSphere and “Think Outside the Bit” are Trademarks of CIMI Corporation. Copyright © CIMI Corporation Voorhees NJ USA. All Rights Reserved.

Think Outside the Bi
t

Apple’s iPhone Architecture

Presenter
Presentation Notes
Apple’s iPhone is based on a version of OS X, the same OS used on the Mac, but the application framework is very different. The application framework for iPhone is more “browser-like” than application-like, in my view. The structure is built around the iPhone’s GUI and the assumption is that all applications coexist on this visual real estate. The basic application interfaces are designed to link to the Cocoa element, which exposes APIs for Objective C and not Java. Thus, I believe that the iPhone could not support Experiams unless the process were hacked, which clearly I cannot recommend.

The most logical way to deal with the iPhone would be to use its local tools, either in the form of Cocoa applications that conform to the Apple development standards or in the form of browser-based applications, to generate protocol triggers back to an Experiam, which would then link it as a BIND event. There is a rich programming structure to support this, and thus ExperiaSphere central functionality can easily support iPhone applications using the “Event Approach”, with a virtually unlimited repertoire of events.

ExperiaSphere and “Think Outside the Bit” are Trademarks of CIMI Corporation. Copyright © CIMI Corporation Voorhees NJ USA. All Rights Reserved.

Think Outside the Bi
t

The LiMo Architecture

Presenter
Presentation Notes
The LiMo architecture is a middleware-based architecture built on Linux kernel logic, which has been simplified to be essentially an embedded control OS and not a true Linux system. The middleware is designed to support the essential tools of resource, communications, and security management but does not include any real application framework, GUI, or virtual machine structure. Thus, LiMo by itself is not really a device control system, but only a piece of one. This, I should stress, is its goal; the Limo Foundation has elected to leave the parts of the handset or device process where competitive differentiation is likely to occur, making it easier to create “unique” LiMo products that still benefit from a standard software/hardware framework.

The structure of LiMo means that ExperiaSphere would have several options in dealing with it. First, a LiMo developer could create applications on the basic middleware that would generate protocol signals as event triggers to Experiam BINDs, as we’ve already discussed. This requires no extension to LiMo at all. Second, a developer could link LiMo with a browser and provide web-based protocol triggers as BINDable events. Finally, a developer could port a JVM to LiMo and actually run Experiams. If the JVM were a full J2SE V6 implementation, it could support as much Experiam logic as the resources of the device permit. If less than that were available, the LiMo VM could still host proxy Experiams for the “Proxy Approach”.

LiMo poses challenges and offers opportunities, in my view. In the problem area, a full ExperiaSphere implementation running ON LiMo would require porting the JVM there, a non-trivial task. In the opportunity area, LiMo offers more customization of the application environment because it doesn’t have any of its own high-level GUI or application tools, and so might be a very strong platform for the “As Usual” option, stronger than the other two choices we’ve covered here.

ExperiaSphere and “Think Outside the Bit” are Trademarks of CIMI Corporation. Copyright © CIMI Corporation Voorhees NJ USA. All Rights Reserved.

Think Outside the Bi
t

In Summary…

• ExperiaSphere’s “experiences” are represented
by Java objects that can be triggered in a variety
of ways

• Where Java is runnable on a remote device, that
device can run Experiams and use at least some
ExperiaSphere mechanisms directly

• Where Java cannot be run, any communications
channel can be used to activate an experience
through ExperiaSphere mechanisms

Presenter
Presentation Notes
ExperiaSphere encapsulates services and experiences as Java objects, and these can be further decomposed into other feature objects—all these objects being “Experiams”. That means that some Experiams can be used wherever Java can be run, which is particularly the case for Android. But even where Java won’t run, the device can use any network protocol to signal for ExperiaSphere services as long as a compatible “Host Experiam” listens to the protocol request.

It’s important to keep in mind in all of these cases that some services themselves can’t be delivered to a given device either because the device won’t support them or because the communications channel to the device won’t. You could make ExperiaSphere respond to a request to deliver an HDTV movie to a standard cellphone, for example, but there would be no way to send the video or to view it on the device. The fulfillment of the experiences themselves requires a bearer channel partnership between the service or experience source and the device, and all that ExperiaSphere can do is exploit the capabilities of this partnership.

ExperiaSphere and “Think Outside the Bit” are Trademarks of CIMI Corporation. Copyright © CIMI Corporation Voorhees NJ USA. All Rights Reserved.

Think Outside the Bi
t

We Need Help!
• Equipment vendors who are prepared to work to expose

management APIs via Experiams
• Software/application vendors who are prepared to create

Experiams around their interfaces and elements
• Enterprise equipment and software vendors interested in

an ExperiaSphere model of collaboration and Unified
Communications, or other applications

• Java programmers who want to participate in the service
convergence revolution

• Contact tnolle@cimicorp.com for details on how to get
involved!

Presenter
Presentation Notes
I hope that this has whetted your appetite and interest in ExperiaSphere and that you want to get involved. Good, because I need your help with this. ExperiaSphere will be an open source CDDL project that will hopefully draw resources from a variety of sources in our industry, but there are some early priorities that we need to address and so I’m focusing there first.

The number one issue we must address is the actual control of physical resources, which would be done via normal resource management systems and interfaces. I’m calling for equipment vendors to work with us to create Experiams that envelope their interfaces, in such a way as to be secure, protected, and reliable.

The second thing we need is a similar level of support for existing operations and network application processes. Work with us to build Experiams around these. Remember, your software isn’t released into open source by this move, only the interface to it!

The last thing we need is Java development help. We’re particularly interested in Java programmers who can work with the concurrency and event handling capabilities of Java 2 SE version 6, with things like threads and thread pools, blocking queues, and so forth.

If you are willing to step up here, we can accomplish a lot. Please contact me personally at tnolle@cimicorp.com or call me at 856 753 0004 and let me work with you in a partnership to change our market.

mailto:tnolle@cimicorp.com

ExperiaSphere and “Think Outside the Bit” are Trademarks of CIMI Corporation. Copyright © CIMI Corporation Voorhees NJ USA. All Rights Reserved.

Think Outside the Bi
t

Thank you!

	ExperiaSphereTM and Embedded and Open Handset Architectures
	A High-Level View of a “Service”
	ExperiaSphere and Services
	What’s an Embedded System and Why Does ExperiaSphere Care?
	An Overview of the Issues
	Embedded System Architectures
	Supporting Embedded Architectures
	The “As Usual” Approach
	The “Proxy Approach”
	The “Event Approach”
	Some Key Examples
	Google’s Android
	Apple’s iPhone Architecture
	The LiMo Architecture
	In Summary…
	We Need Help!
	Thank you!

