@ < Please double-click on the note callout for speaker notes!

Gﬂ d S,Oé Version 1 June 4 2009
.
o

¢ g
) 7
éOutside{Q

ExperiaSphere and Google Wave

This is a public document and may be shared freely in its current for, and
quoted if attributed to CIMI Corporation. Contact us for other uses.

Note: The material we include on Google Wave here is our interpretation of Wave based on Google’s published material, as available
at the time of our writing this document. We take no responsibility for the accuracy of this material and any who use this to understand
Wave does so on their own initiative and without support of ExperiaSphere or CIMI Corporation. Trademarks are properties of their
eiaS, % respective owners.
N Q.

o©

%

. Y
%, &
% Outsice ™

X

ExperiaSphere and “Think Outside the Bit” are Trademarks of CIMI Corporation. Copyright © CIMI Corporation Voorhees NJ USA. All Rights Reserved.

Presenter
Presentation Notes
One of the things we’ve tried to do from the first with our ExperiaSphere project is to reflect the important developments in the industry in our applications and plans. When Google announced its communications/collaboration “Wave” initiative, we knew it would be such a development. This document is our first, and high-level, effort to explain how Wave and ExperiaSphere relate.

What We'll Cover Here

e An Introduction into Google Wave

A summary of how the basic concepts of
Wave relate to the basic concepts of
ExperiaSphere

 How ExperiaSphere might interwork with
Wave
— To iImplement Wave features
— To Incorporate Wave into experiences

eY\aS

Q% L
> Q
)’\5/ Q,Q;\\

/%Outside«\ ExperiaSphere and “Think Outside the Bit” are Trademarks of CIMI Corporation. Copyright © CIMI Corporation Voorhees NJ USA. All Rights Reserved.

Presenter
Presentation Notes
It’s hard to understand how two things relate if you don’t know how either of the things works in the first place. Thus, we’re going to assume that anyone who reads this document has read the introduction to ExperiaSphere and the technical primer. If you haven’t then we strongly recommend you do so before you read any further.

What we’re going to cover here is how Google’s Wave and ExperiaSphere relate, and that will begin with a brief tutorial on Wave, focusing on the aspects that will be relevant to our mission. We’ll move from that to a summary of how basic Wave concepts relate to basic ExperiaSphere concepts, and in that area we’ll look at both SocioPATH as the closest relative in a functional sense to Wave, and at ExperiaSphere’s resource control and service control process—the substance of our Alpha One release.

Finally, we’ll look at how ExperiaSphere and Wave might be used in a cooperative or symbiotic way. This will look at both situations where ExperiaSphere supports what’s essentially a Wave environment, and how Waves might be integrated into ExperiaSphere.

Important Things to Keep in Mind

« Google Wave isn'’t in its final form at this point so
conclusions on how it works are necessarily
tentative

 There are two issues to consider with regard to
ExperiaSphere and Wave
— Wave and SocioPATH social frameworks
— Wave and ExperiaSphere resource/service control
frameworks
 There may be some relationships between Wave
and both the above

eY\380
R 6@

X

NS

) N9
//%Outside’«\@ ExperiaSphere and “Think Outside the Bit” are Trademarks of CIMI Corporation. Copyright © CIMI Corporation Voorhees NJ USA. All Rights Reserved.

Presenter
Presentation Notes
OK, this is where we get the important disclaimers out of the way!

First: Google’s Wave material at this point is very preliminary and in many areas it’s explicitly subject to change. Thus, we’re somewhat at risk to having something we propose here turn out wrong because of a change Google decides must be made. That’s the price of an early view of how something works!

Second, we want to re-emphasize that there are really two pieces to ExperiaSphere—the SocioPATH communications framework that is more directly related to Wave as a communications/collaboration framework, and the resource and service control parts that we demonstrated in our Alpha-One release. Both these can be related to Wave, and in fact both can be related either independently or at the same time.

What's in a Wave?

Obviously we believe Google’s Wave is
important, even revolutionary, but to understand
why you have to look beyond the press
coverage and explore the developer-level
material to understand what Wave is—an
architecture for communications and
collaboration

ef\ aS 0
R
()
A N4

%, N9
//%Outside«\e ExperiaSphere and “Think Outside the Bit” are Trademarks of CIMI Corporation. Copyright © CIMI Corporation Voorhees NJ USA. All Rights Reserved.

Presenter
Presentation Notes
Google’s Wave was announced in late May at their developers’ conference, which we think tells you something important about Wave. It’s not a product as much as an architecture, though Google will certainly be deploying “Wave” in some form. Think of Wave as a kind of communications/collaboration hosted middleware for communications and collaboration. You can build stuff with or onto it, but it’s not designed to do or be any single specific thing. That’s why we see red when people say it’s a new kind of email or IM. It’s something you can do email-like things, or IM-like things, with. It’s not limited to that.

Wave Essentials

-
00 (= [~ |~
Wielcoms o When ahe we L
D i B patEng piraa’ i T
Weramlad L J L) D
8 o
Wave ()
I '8) -
0 wo | [o
—
Fdl Father et e, i Boa p—
D Medcan food | | Lecsmat | T)
>
Wit J
e, o
. _J
Figure Courtesy of Google

Waves are XML objects that are hosted on a server, and that act
as “containers” to organize a group of conversational
relationships among users who are members of hosted
communities on multiple servers. Conversations are similarly
structured and hosted, called wavelets—which can be federated
from multiple hosts.

eﬂ asS Yo}
RN
Q/ ()
2 S

%, N
//%Outside\“?’ ExperiaSphere and “Think Outside the Bit” are Trademarks of CIMI Corporation. Copyright © CIMI Corporation Voorhees NJ USA. All Rights Reserved.

Presenter
Presentation Notes
If you want a complete tutorial on Wave we recommend you go to Google’s website and read their material in depth. For those who have, or don’t want to, what we’ll present here in the way of Wave essentials is designed to explain Wave so that we can relate it to ExperiaSphere. There’s stuff Wave does that we don’t think has special significance for that relationship, and we’re not going to get into it all.

Here’s kind of a quick Wave 101 architecture. Imagine this community of servers, a cloud if you like, each of which has its own set of users. These servers are federated into a cooperating complex to do something. What? To build and sustain Waves.

A Wave is a cooperative communications/collaboration context (sorry for the euphonic statement) that is defined in an XML template and hosted on a “Wave server”. The Wave XML is a container for a series of “wavelets” that represent specific communications exchanges, consisting of what Google calls “blips”. These represent a history of communications within a community of users of that wave. Wavelets, we think, are also XML structures and they’re also hosted. But wavelets also have an HTML appearance; they look like some sort of screen or panel.

The person who creates a Wave or Wavelet would host it on the Wave server they’re associated with. Other users would access the Wave/wavelet not by getting onto this prime server but by getting onto their own Wave server and then receiving the access they need in a federation process. By that we mean that when a user from another Wave server (we’ll call a Wave server’s community a “sea” just to be cute, so we’d say here that the user was in “another sea”) joins a Wave and gets access to some wavelets, the Wave server for the sea with the new user(s) in it will get copies of the Wave and wavelets for local efficiency. But they’ll use these to federate changes back to the Wave server that owns the Wave.

Users thus see a Wave as a distributed structure that is anchored in the “authoritative Wave” of the owner’s server.

Wave GUI

Wavelets are the basic element of communication in
Wave, and each Wavelet is hosted by the Wave server of
the user who owns it. A copy is syndicated to the Wave
Servers of other users who are participants, and the
copies are synchronized through a Federation protocol, an
extended XMPP

Welcoms ba When ane we
the iz pattng paaa T

Waranle? . J L | \
4

Fdl Father et e, i Boa

Hesican food L'y badl
Wit L J
B

L \ _J

\ Figure Courtesy of Google

~

U e B B=p
o

00| (OO0

i

Owner

Gadget

efiaSy,
49 6&

_ Wavelet J

&
//\5/ SN

N9
O/"Outside\“?’ ExperiaSphere and “Think Outside the Bit” are Trademarks of CIMI Corporation. Copyright © CIMI Corporation Voorhees NJ USA. All Rights Reserved.

Presenter
Presentation Notes
Let’s now look at the Wave GUI, what the user of a Wave actually sees. The GUI is an application (a browser add-in) that is called a Wave Client, and it processes HTML (ultimately HTML 5 according to Google) to create a display. The HTML contains visual information and application information, which developers can extend by building “Gadgets”. These are like the Gadgets of iGoogle or OpenSocial in a general sense; they have a “hook” that references where they display and an “action” that defines what they do. What makes Gadgets distinctive (iGoogle or OpenSocial gadgets will work in the Wave Client) is that they have access to the Wave’s data store and can set and read parameter values associated with their use in the Wave. A Gadget is anchored in the Wave—all the Wave Clients have the same Gadget logic and data store—but the Gadget is instantiated in each Wave Client.

Conversations in a Wave are represented by “wavelets” and elements of conversation by “blips”. Users of the Wave get permission to participate in wavelets. Conversations are likely to be related to each other by being related to the concept that built the Wave to start off with, but as the figure (from Google’s material) shows here, users can pull each other aside into private wavelets for personal discussions. These may be in the same Wave as broader discussions but are visible only to those admitted to them.

The Wave itself is hosted on a Wave server, the server that “owns” the user who created the Wave in the first place. Thus, every Wave user belongs to a community hosted by a Wave server, and this is something we’ll (with what we hope is pardonable whimsy) call a “sea”. Wavelets are also assigned to a sea, hosted by the server that owns the user who created them. However, wavelets from other seas can be included in the process through federation, which we’ll get to. If a Wave user isn’t a member of the sea of the Wave server where the Wave is kept, the user’s own Wave server will host that user’s experience and coordinate the user(s) behavior back to the owning Wave server through federation. Thus, every “sea” where there’s at least one user will have a local copy of the Wave and Wavelet and will synchronize it with the master copies wherever they’re hosted.

')
Wave GUI In Detall

JavasScript

4

In each Wave Client

\ Wavelet /

N
N

Private “Data”
Wavelet

In the “owning” Wave server

e(\ asS Yo}
N 6@
()
% >

) N9
//%Outside‘“e ExperiaSphere and “Think Outside the Bit” are Trademarks of CIMI Corporation. Copyright © CIMI Corporation Voorhees NJ USA. All Rights Reserved.

Presenter
Presentation Notes
If you look at the Wave GUI in more detail, you see that there’s an essential split of functionality between the Wave Client running the GUI and the Wave server that hosts the Wave and wavelets. Each wavelet is reproduced from the local Wave server (in the “sea” of the user) and so are the Gadgets that run in it. Any data referenced by the wavelet/Gadgets is stored in the Wave and federated back to the owning or authoritative Wave server that actually owns the process overall. Wavelets and Gadgets are windows on the Wave.

Waves and Processes (Robots, Gateways)

Robot processes and service
gateways that provide management

— and linkage to other non-Wave

environments

-

t

\ Wave \ Multiple public and private wavelets,

referenced in the Wave and hosted on
the Wave servers of their owners

Wavelet updates are federated
between the Wave servers of the
participants and the Wave server
where the wavelet is authoritatively
hosted (its owner’s server)

e(\ asS Yo}
RN
()
2 S

%, N
//%Outside\“?’ ExperiaSphere and “Think Outside the Bit” are Trademarks of CIMI Corporation. Copyright © CIMI Corporation Voorhees NJ USA. All Rights Reserved.

Presenter
Presentation Notes
Another tool in extending Waves are Robots. Robots are processes that are attached to waves, and they are not based on Javascript or some other scripting language but rather on real programming languages like Java or Python. Google will be publishing an API to reflect how these processes work; for now they’re hosted on Google App Engine. Robots can have the power to operate on the Wave itself, and on the Gadgets used in it. A special form of Robot (which Google material sometimes separates and sometimes doesn’t) is a “Gateway” that can link between a Wave and some communications or collaborative environment, like Twitter.

[Gad et\ A Gadget in a wavelet can create a signal for a
J) communications service and populate the Wave data store
Wave Client y with the needed information (address of user, for example)

) Federation Link

ROBOT

A Robot running in a Wave server (or in theory
in any compatible server, including and
especially Google’s App Engine) can then see
the change in the wavelet and run the logic to
make the connection

T

e(\ asS O
L2200
()

A SN
%, N

4Outside\“6 ExperiaSphere and “Think Outside the Bit” are Trademarks of CIMI Corporation. Copyright © CIMI Corporation Voorhees NJ USA. All Rights Reserved.

Presenter
Presentation Notes
For our purposes here, this is an important slide because it shows the basic means of linking a Wave to an external service framework. You start with a wavelet that contains a Gadget that represents this external framework. That Gadget is designed to collect information needed to complete the external service request, such as the address of the other party. The Gadget, you will recall, stores this data inside the Wave.

The Robot is a process that’s run as a part of the Wave. It’s hosted in some compatible external server, and it is activated when something happens to the Wavelet it is monitoring (or as many such wavelets as you like). The Robot, having been activated, can read the variables set by the gadget and can then perform the necessary functions to create the connection. It is the responsibility of the Robot and Gadget logic to insure that the connection made is somehow reflected into the Wave Client so the user knows about it.

Remember this process; it’s important for how ExperiaSphere works with Wave.

Wave and ExperiaSphere Architectures Compared

We didn’t set out to anticipate Wave, nor we're
sure did Google set out to replicate
ExperiaSphere, so we have to look first at the
basic approaches and how they differ

eﬂ aS Yo)
Ry
()

2 Y
%, N9
//%Outside«\e ExperiaSphere and “Think Outside the Bit” are Trademarks of CIMI Corporation. Copyright © CIMI Corporation Voorhees NJ USA. All Rights Reserved.

Presenter
Presentation Notes
If you’ve grasped the basic notion of Waves (can we say, “If you’ve immersed yourself in Waves?”) you’re now ready to look at the way Waves and ExperiaSphere might cooperate. The best way to start that off is to look at the basic similarities and differences at the architecture level.

About the Next Slides

e Our goal is to look at how Wave compares
with our ExperiaSphere work

« We’'ll present how Wave operates at a
high level in three areas (service, hosting,
and GUI)

« We’'ll then present how SocioPATH group-
social communications works, and how
ExperiaSphere resource/service control
works In those same areas

e(‘a S,Oé
NG
\/&

Q
<
/
)’\5/ @é\\

O/“Outside\“ ExperiaSphere and “Think Outside the Bit” are Trademarks of CIMI Corporation. Copyright © CIMI Corporation Voorhees NJ USA. All Rights Reserved.

Presenter
Presentation Notes
Let’s first establish our goals. We’re going to compare Wave in three critical areas with two things. First, our own social communications framework, SocioPATH, which is the thing most closely related to Wave. Second, our ExperiaSphere resource and service control processes, the foundation of our Alpha-One release.

The “Service”

In Wave... In SocioPATH... In ExperiaSphere

A mosaic of conversations A set of collections of Entities An agreement to commit
inside “wavelet” containers, called “Groups”, defining a resources to secure a specific
collected into a context-object social context for all user experience
called a Wave relationships between the
members
\a
-\-QQY S'oé®

A
o©

G

5,
//)/"Outside«\e ExperiaSphere and “Think Outside the Bit” are Trademarks of CIMI Corporation. Copyright © CIMI Corporation Voorhees NJ USA. All Rights Reserved.

Presenter
Presentation Notes
Waves are context objects that represent some class of persistent multi-party relationship. They presume that there’s a community of users divided into what we called “seas”, each built around a Wave server, but the Waves are templates for relationships and these templates create the communications framework. Absent Waves, the seas are just users floating in the void.

In SocioPATH, users (Entities) are collected into communities that we call “Groups”. Their communications policies are set for each Group, and when they are communicating they belong to a default group (the “Owning Group”) and it’s those policies that define how users communicate. There is noting explicit in SocioPATH to record what the users might be communicating about; no conversational context. SocioPATH is group-centric.

In ExperiaSphere, the basic resource/service control tools, the service provided is explicit in the structure of the Service Factory. You place an order and you get what you ordered. There is no explicit notion of users, or conversational context at all.

In Wave...

Users are grouped into what
we’'d call “Seas” around Wave
Servers, and the users’ own
server hosts at least a copy of
the Waves/wavelets they are
using

The Hosting

In SocioPATH...

User groups are hosted by
Group Entity Brokers, and
individual users by Local Entity
Brokers. A GUIBroker provides
access to the physical client
devices

In ExperiaSphere

Experiams are hosted by the
administration that creates one;
a Proxy is used to represent a
federated functionality from a
different administration

efiaSy,
49 6&
o®©

e S
&

/"Outside‘“e ExperiaSphere and “Think Outside the Bit” are Trademarks of CIMI Corporation. Copyright © CIMI Corporation Voorhees NJ USA. All Rights Reserved.

Presenter
Presentation Notes
Let’s now look at the hosting of the three architectures.

Wave has Wave servers, and these Wave servers are the center of user communities (which we’ve called “seas”). Users in a sea always get their direct experience from their associated Wave server, but that server will federate with the real owner of the Wave/wavelets to assure data is consistent and concurrency is managed.

SocioPATH Groups are hosted on a Group Entity Broker, and users (represented by Local Entity Brokers in a logical sense) link to their Owning Group’s Broker to get the profile and update information. The user interface is provided by a GUIBroker that can present the user’s service framework in a GUI form acceptable to the device(s) in use.

Experiams exist inside a Service Factory, which is a server, but some Experiams can be Proxies, meaning that they represent a contribution of capabilities made by another party. The Proxy will link to the actual Service Factory where the service contribution is available.

e
&

e‘b
% Outsice ™

The User’s Interface

In Wave...

—>

Wavelet

HTML \\A Lo

A Wave Client provides the
basic display, and a single
wavelet-based structure
provides a template for the GUI
to each patrticipant, with the
Wave server for the participant
hosting the local copy

efiaSy,
49 6&

o©

o

In SocioPATH...

A GUIbroker provides the
“panel” that represents the
relationships to each
user/device independently, and
the panel can work inside a
browser or any other display
tool

In ExperiaSphere

Service ordering would
normally be done through a
web server linking to an
OrderBroker; the same
structure could be used for
other service GUIs but an
application GUI isn’'t normally
part of ExperiaSphere services

ExperiaSphere and “Think Outside the Bit” are Trademarks of CIMI Corporation. Copyright © CIMI Corporation Voorhees NJ USA. All Rights Reserved.

Presenter
Presentation Notes
The GUI is a key issue in harmonizing Wave and ExperiaSphere because that’s how the architectures would relate to the user. Let’s take a look at the differences.

In Wave, there’s a Wave Client that runs HTML representing the structure of the display for the wavelets, which can include Gadgets that extend both the basic interface and the functionality of the Wave. The display aspects of the wavelets are always hosted by the Wave server that owns the user—in the user’s “sea”—but the data is synchronized through federation back to the owning Wave server. You can embed Wave references into any HTML page.

In SocioPATH, the user interface is always created by a GUIBroker, which is a server that understands how the user interacts with the services available. The GUIBroker might provide the entire GUI support—acting as a web server for example—or it might provide only the Ajax or GET/POST interactivity (the “back end”) logic, leaving it to a real web server to paint the display. That’s the normal setup. There can be multiple GUIBrokers, and anything that can generate an HTML event (like a GET or POST) can activate a GUIBroker and thus control or utilize SocioPATH.

In ExperiaSphere, the presumption is that the GUI is to order something and so the OrderBroker manages the GUI in the service order process. This works pretty much like it would work in SocioPATH, and our Alpha-One demonstration shows how a web server and an OrderBroker can operate synchronously to create the user experience.

Wave Concept

ExperiaSphere Concept

Harmony

Context-Object “Wave” is the focus of
presentation and implementation

In SocioPATH, the user constructs a
panel that presents a user’s “social
universe” and services are then
mapped into it

The panel/user association is arbitrary; it would
be relatively easy to map a unique panel for each
experience; harmonizing the user of the two
different approaches might require thought

Waves are hosted on a Wave Server,
and made up of wavelets

GUI Panels are hosted on the
GUIBroker, presence and state on The
Local Broker and the user’s specific
templates are hosted on the Owning
Group server

The hosted notion is essentially the same; the

GUIBroker in SocioPATH provides the display
management for the user and the Local Broker
the presence hosting

Waves support collaborative editing
and concurrency control for
documents

ExperiaSphere doesn't contain a
document editing application; there is
a basic concept of “concurrency
control” associated with Proxy/Host

If concurrent editing is a goal, it would be logical
to link it to ExperiaSphere from Wave or another
platform rather than duplicate it in ExperiaSphere

Wave hosts federate the coordination
of Waves and wavelets

ExperiaSphere federates roles in the
experience control portion and
federates user profiles among Group
Entities in SocioPATH

ExperiaSphere could implement the XMPP and
extension approach taken by Wave

ExperiaSphere and “Think Outside the Bit” are Trademarks of CIMI Corporation. Copyright © CIMI Corporation Voorhees NJ USA. All Rights Reserved.

Presenter
Presentation Notes
Let’s now look at four other important elements in comparing Wave and ExperiaSphere, which here will mean both the Alpha-One resource portion and SocioPATH. We’ll also look at some basic harmonizing approaches.

First, Wave is based on a context-object, a focus of interest or activity that will sustain some persistent set of user interactions. ExperiaSphere is based on creating a Group-defined social universe as the context. But remember that in SocioPATH, a user has an “Owning Group”. There is no reason why that “Owning Group” could not be either a social group as it’s currently defined, or a context-based or document-based Group like the one created by Wave. We’d have to consider the details of Wave to insure the mapping was effective, but it appears as though we could represent context-based communities as easily as social-based ones.

Second, Waves are hosted on a server and are made up of conversational Wavelets. In ExperiaSphere we have a similar but perhaps more granular hosting mechanism because we avoid the notion of a specific “Client” application. We could, however, support a client applet or add-on. There’s no reason why we could not appear to Wave as another Wave server.

Third, waves provide inherent support for collaborative editing, concurrency, recording of past changes and roll-back or review, etc. These are elements of the core application that supports the context object. There is no such document centricity in ExperiaSphere. While we might in theory create it, it would seem more logical to simply integrate with Wave to get this where appropriate.

Finally, Wave federates the data used in controlling Waves and Wave users among all the Wave servers involved. ExperiaSphere provides for federation in a specific group/communications sense among the Groups the user is involved with, and ExperiaSphere has a general set of tools for exchanging roles and supporting cooperative behavior across multiple providers. We could obviously implement the XMPP and XMPP extensions of Wave to participate in their federations.

Some Strategies for an ExperiaSphere/Wave Partnership

Just because the frameworks are not identical
doesn’t mean that there aren’t ways that
ExperiaSphere and Wave can't behave as
partners...no matter who wants to lead!

efiaSy,
49 6&
o®©

2 Y
%, N9
//)/routside«\e ExperiaSphere and “Think Outside the Bit” are Trademarks of CIMI Corporation. Copyright © CIMI Corporation Voorhees NJ USA. All Rights Reserved.

Presenter
Presentation Notes
OK, let’s get to the meat of this whole process. How can Wave and ExperiaSphere work together?

Two Options

« An “outside-Iin” approach that harmonizes Wave

and ExperiaSphere from the perspective of the
user

* An “Inside-out” approach that harmonizes Wave
and ExperiaSphere at a technical level

« Remember that we’re looking at an
Implementation recommendation here, so the
Inside/outside difference is where we start
and not where we end up!

 We'll look at both and compare the results!

e(‘a S
Q;_Q i 6@

%, N
/%Outside‘“@ ExperiaSphere and “Think Outside the Bit” are Trademarks of CIMI Corporation. Copyright © CIMI Corporation Voorhees NJ USA. All Rights Reserved.

Presenter
Presentation Notes
We’ve always got choices, including where to start, so let’s outline them here. We can look at this from the outside in, from the user perspective, or from the inside out—the implementation perspective based on commonality of approaches. We have to resolve both approaches to some recommendation of what steps to take, of course.

Outside-In GUI Harmony

Wave ExperiaSphere/SocioPATH

a A - 2

Wave “Embedded”

A

Y
AN
e
AN

ExperiaSphere “Gadget”
and Robot Pair

__Qe(/‘\,,a_§06®
Q/ A

Q®

2 3
%, Y
//%Outside«\e ExperiaSphere and “Think Outside the Bit” are Trademarks of CIMI Corporation. Copyright © CIMI Corporation Voorhees NJ USA. All Rights Reserved.

Presenter
Presentation Notes
We’ll do outside-in first.

If you look at this process from the perspective of the user, harmonizing Wave and ExperiaSphere could be viewed as making each a part of the GUI of the other in some way.

Wave is designed to be embedded, and Wave “Embed” code can be added to the Panel of any GUIBroker in SocioPATH as an item to click on. If that’s done, the user can click on the object and launch Wave. Functionally, that’s about all that would be required; we’ll get to the details later on.

Wave is also designed to be extended through the use of Gadgets and Robots. We noted that you could embed Twitter in a Wave by adding the appropriate Gadget to provide user access, and a Robot to serve as a gateway. The Gadget in Wave could then activate a SocioPATH or ExperiaSphere process.

Since the whole notion of this is to create something that gives the user a composite of the two approaches, these pictures offer your high-level choices. The devil, of course, is in the details.

QOutside-In to the Next Level

Ships in the Night: Wave and ExperiaSphere
could be run as two different and parallel
applications, with a link (embed or Gadget) in one
simply invoking the other. Nothing needs to be
done to either to make this work other than
the cosmetic embedding of links!

Partner Processes: Wave and ExperiaSphere
could be run in a symbiotic way where there was
functional integration between the two. To make
this work we must define how one process
would look to the other. That leads to our
“inside-out” view.

. &
//%Outside\“?’ ExperiaSphere and “Think Outside the Bit” are Trademarks of CIMI Corporation. Copyright © CIMI Corporation Voorhees NJ USA. All Rights Reserved.

Presenter
Presentation Notes
If we can represent ExperiaSphere to Wave and vice versa, in GUI terms, we can integrate the two in some way. But how? There are two basic approaches. First, we can treat the two as “ships in the night”, as two parallel processes that are aware of each other but not really cooperating with each other in a meaningful way. Second we can try to create some functional integration between the two to make the two frameworks truly symbiotic.

B2

Creating a “From the User In” Harmony as Ships in the Night

Waves are context objects in that they ExperlaSphere
represent some presumably persistent Entity
Wave collaborative/communications Profile
relationship involving some number of XML
XML individuals. ExperiaSphere Entity (including
Profiles represent the users, and Group Group
memberships are stored in the profiles membership)

A given user GUI is created in each of
the two architectures, so this GUI can

Wavelet include a link that activates a “window” GUIBroker
and “Blip” representing the other architecture, GUI
HTML which supports ships-in-the-night “Panel”
operation

: N9
/%Outside‘“@ ExperiaSphere and “Think Outside the Bit” are Trademarks of CIMI Corporation. Copyright © CIMI Corporation Voorhees NJ USA. All Rights Reserved.

Presenter
Presentation Notes
The first of our approaches is easy. We could presume that the GUIPanels of ExperiaSphere contained a link that activated a Wave, using the Embed logic and APIs Google defines. Click on the link and you activate your Wave Client and that gives you Wave behavior. Similarly, we could have a simple link in the wavelet HTML to activate the ExperiaSphere/SocioPATH GUIBroker process. Not much beyond HTML design is needed to make this work, but it’s pretty basic integration.

Inside-Out Integration: Service
Channels

Service Channels

A1u3 [es07
A1u3 dnouo

In SocioPATH, Service Channels

provide communication between o
Entities S
0
E:
-\-Qe(\aS'OéQ
C

2
% . . .
//%Outside«\e ExperiaSphere and “Think Outside the Bit” are Trademarks of CIMI Corporation. Copyright © CIMI Corporation Voorhees NJ USA. All Rights Reserved.

£

Presenter
Presentation Notes
If we want to go beyond simplicity into partnership and functional integration we need to find some common concept to build around. Since the common purpose of both frameworks is communication, let’s look there first.

In ExperiaSphere/SocioPATH, communications is created by “Service Channels”. These are logical conduits that map to connection network services and are represented to the users in their interactions with SocioPATH—through their GUIBrokers. If two users are represented in a common Service Channel and if their policies permit, they can use it to communicate with each other. We could have a “Twitter Service Channel”, for example.

B2

NS

Wave Gadgets and Robots can

Link to “Communications Services”

[Gadget

[Wave Client

eriaS
~ 'Oég

2]

. Y
%, &
* Outside

Federation Link

ROBOT }

ExperiaSphere and “Think Outside the Bit” are Trademarks of CIMI Corporation. Copyright © CIMI Corporation Voorhees NJ USA. All Rights Reserved.

Presenter
Presentation Notes
In Wave, we’ve already noted that you can use some external communications service—again, like Twitter—by having a Gadget to represent the service and by having a Robot that provides a link between your Gadget and the actual Twitter capability. Google even has sample code for this application on their Wave website.

The Service Channel as a
Unification Strategy

e Service Channels represent “connection
services” in ExperiaSphere/SocioPATH

e Google Wave can integrate connection
services (like their Twitter example)
through Gadgets and Robots

 Thus, Service Channels can be viewed as
a language spoken by both architectures,
and a logical way to create harmony

8(‘\88,06
T C,

A9
& \Q
/
A 5
’5/‘ be
K Outside A

Presenter
Presentation Notes
So here’s where we end up. Service Channels represent connection services in ExperiaSphere and SocioPATH, and they can represent things like Twitter. In Wave, you can integrate this same service (and service type) using the Gadget/Robot combination. Ever hear of the “commutative property”? “Things equal to the same thing are equal to each other”, and in this case things that can reconcile to a common element can connect through it to integrate. That’s our framework for functional integration of Wave and ExperiaSphere.

.
Inside-Out Harmony: The “Service Channel” Approach

A Wave could appear in SocioPATH as Enti_ty
a Service Channel with its Channel Profile
Wave Handler acting as a federation br(_)ker in XML
XML the XMPP-Extended protocol defined by (including
Google. In Google’s Wave, this looks Group
like a Gadget/Robot attached to the membership and
Wave. Service Channels)
| |
| The activation of a “Wave Service |
Channel” could simply invoke the Wave
as a separate browser window
Wavelet GUIBroker
and “Blip” GUI
HTML “Panel”

, &
/%Outside‘“@ ExperiaSphere and “Think Outside the Bit” are Trademarks of CIMI Corporation. Copyright © CIMI Corporation Voorhees NJ USA. All Rights Reserved.

Presenter
Presentation Notes
OK, let’s make Service Channels into our “universal constant” for functional integration.

On the Wave side, we define a Robot that presents an interface to what in ExperiaSphere would be called the “Channel Handler”. This acts as a client to the connection network that the Service Channel uses. Google’s Twitter code sample is a good framework for understanding this part. This same thing is defined as a Service Channel in ExperiaSphere. What would then happen is that the Wave process of activating the communications connection would map to a Service Channel “ring” on the SocioPATH GUIBroker panel and presumably vice versa.

To make this work, you’d need code for the Gadget and the Robot on the Wave side and the Channel Handler on the ExperiaSphere side.

Can We Tighten Integration?

A common Service Channel gives us functional
Integration at the connection service level

 The two GUIs are not integrated so the Wave

user doesn’'t know about SocioPATH; each just
uses a common channel

e Integrating the GUIs in some way means making
ExperiaSphere speak Wave’s Federation
protocol language

e(‘a S
Q;_Q i 6@

%, N
/%Outside\“@ ExperiaSphere and “Think Outside the Bit” are Trademarks of CIMI Corporation. Copyright © CIMI Corporation Voorhees NJ USA. All Rights Reserved.

Presenter
Presentation Notes
In the approach we’ve created so far, we have completely non-integrated GUIs. We have ships-in-the-night integration and we have common-Service-Channel integration. The question is whether we can find some options for a tighter connection. To make that happen, since it’s unlikely Google will adopt SocioPATH, is to make ExperiaSphere link more directly to Wave. The most logical way to do that is to make ExperiaSphere a participant in a Wave federation and use the standard Wave Federation protocol, an open extension of XMPP.

Service Channel Handler as a Proxy

ExperiaSphere/SocioPATH
Google Wave Federation

————

A
v

A
v

A Wave A SocioPATH
Wave Wave

Wave ~——
Users /‘ \

GUIBroker

Web
Server

View of the View of the

Wave Channel

Wave
Server

‘ ‘llllll.ll.........lllll’

XMPP-Extended

D)

Local Entity

Group Entity Broker

Broker

SocioPATH

efiaSy,
49 6&
o®©

2 S
%, Q

/"Outside‘“e ExperiaSphere and “Think Outside the Bit” are Trademarks of CIMI Corporation. Copyright © CIMI Corporation Voorhees NJ USA. All Rights Reserved.

Presenter
Presentation Notes
Here’s a straightforward way to start that process. We’ve got our “Wave world” to the left and ExperiaSphere and SocioPATH to the right, with a nice boundary separating them. On that boundary we’ve added a box that is a Wave Channel Handler Proxy. This is a hosted software process in ExperiaSphere/SocioPATH that looks like a Wave server to Google’s real Wave servers, and that speaks the XMPP-Extended federation protocol.

In this, we’re assuming that we have Wave Client and its associated HTML (for Wave/wavelet display) and we also have a GUIBroker and Panel HTML. The key linking assumption here is that we have created a wavelet that is “virtually hosted” by ExperiaSphere and that is thus owned by the Wave Channel Handler proxy. This wavelet is represented in the Wave world by HTML/XML that shows its structure there, and in the ExperiaSphere world by HTML that is available to the GUIBroker. The Wave Channel Handler performs a transformation function to reflect events and process changes between the two worlds using XMPP-Extended.

The issue here is that ExperiaSphere has to do a lot of work, which means that the development of the Wave Channel Handler is a lot of work.

Using an “ExperiaSphere Wave Server” for Integration

ExperiaSphere/SocioPATH
Google Wave Federation

Wave Server

Web
Server

.

o XMPP-Extended GUIBrOKe)

Wave
Server

Local Entity
Group Entity Broker

_ _ _ Broker
Here we have a “wave view” integrated with the

SocioPATH Panel through the GUIBroker, so the
SocioPATH screen looks like a Wave/wavelet
display

SocioPATH

eﬂ aS Yo}
RN
()

P 3
%, o
//%Outside«\@ ExperiaSphere and “Think Outside the Bit” are Trademarks of CIMI Corporation. Copyright © CIMI Corporation Voorhees NJ USA. All Rights Reserved.

Presenter
Presentation Notes
This is a possible solution to the problem. Here, we’re adding a Wave Server to ExperiaSphere to manage all of the aspects of the Wave that are “Google-ish” in nature, meaning that the basic functionality of everything is managed by a real Wave server. The Wave Channel Handler is now replaced by a SocioPATH Robot that provides integration of the framework with SocioPATH overall. Note that in the initial Wave release Google provides no information on private Wave servers or on the APIs they would use, but they’re promising that data will be forthcoming.

Presuming we have a private ExperiaSphere Wave server or an API that lets us link Robots to the wave server, we can now build a Robot that provides the integration between ExperiaSphere and a wavelet. The ExperiaSphere Wave server hosts the Wave and Wavelets and handles all the complex stuff there, so the modifications needed are minimal. The Java Applet we’d write for the Robot now just has to talk to ExperiaSphere to incorporate whatever we decide to exchange.

The beauty of this process is that we could have a number of Robots with separate missions. For example, one Robot could provide for Service Channel access as before. Another could publish ExperiaSphere Group information into the Wave/wavelet to make it correspond with what’s in SocioPATH already. This mechanism, in short, provides pretty flexible integration of Wave and ExperiaSphere, and thus this is the mechanism we propose to work to support.

Summary

Google Wave is still in a preliminary state, lacking some
of the tools promised for integration

Simple integration by cross-connecting GUIs is possible
today

More complex integration regarding shared Service
Channels and shared wavelets is the preferred solution

When the Google information has advanced to the point
where the APIs and process descriptions are published
In fairly stable form, we propose to proceed on the basis
of the complex model of integration outlined in the “Using
an ExperiaSphere Wave Server for Integration” slide

ExperiaSphere and “Think Outside the Bit” are Trademarks of CIMI Corporation. Copyright © CIMI Corporation Voorhees NJ USA. All Rights Reserved.

Presenter
Presentation Notes
In summary, we’ve got a number of approaches that can be taken now, but either they don’t involve a lot of work or they exercise features that aren’t really published yet by Google. We have enough information to outline the best approach, which is to create a Wave Server and a Robot set that will join the two frameworks. As soon as Google finishes its Robot APIs and publishes how to create private Wave servers, we’ll take this approach do a more detailed level and start laying out the actual logic.

	Slide Number 1
	What We’ll Cover Here
	Important Things to Keep in Mind
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	About the Next Slides
	The “Service”
	The Hosting
	The User’s Interface
	Slide Number 15
	Slide Number 16
	Two Options
	Outside-In GUI Harmony
	Outside-In to the Next Level
	Slide Number 20
	Inside-Out Integration: Service Channels
	Wave Gadgets and Robots can Link to “Communications Services”
	The Service Channel as a Unification Strategy
	Slide Number 24
	Can We Tighten Integration?
	Slide Number 26
	Slide Number 27
	Summary

